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ABSTRACT

Quantum systems conditioned on future outcomes must often work against the thermodynamic
arrow of time. We quantify this effort using entropy throughput, an information-theoretic
functional measuring the total distance traveled by a system satisfying two-time boundary
conditions. Using open quantum chains as a testbed, we show that entropy throughput exhibits
a sharp dynamical crossover: from a disordered, decoherence-dominated regime to a purified,
high-throughput regime. The crossover occurs where coherent drive balances dissipation, marked
by a susceptibility peak that sharpens with system size and a transition from slow to fast relaxation
dynamics. This balance point acts as an attractor: a simple adaptive feedback loop naturally tunes
the system to the regime of maximal sensitivity. We propose a Principle of Critical Throughput,
suggesting that finite-resource quantum systems optimize information processing at the edge of
decoherence.

1 INTRODUCTION

Post-selection imposes a thermodynamic cost that standard entropy production cannot capture. When
dynamics are conditioned on both a preparation and a terminal measurement outcome, the system must not
only evolve forward but remain compatible with a specific future. Natural dissipation drives the state toward
equilibrium; the boundary condition may require it to deviate. This tension between relaxation and constraint
satisfaction has no natural measure in forward-only thermodynamics.

We introduce entropy throughput to quantify this tension. The throughput functional J measures the total
thermodynamic activity inferred by an observer with access to both boundaries: the cumulative distance
traveled in entropy space, counting both relaxation toward equilibrium and the “reordering” intervals where
post-selection forces the system away. This total-variation measure captures information-processing effort
that net entropy change misses.

Conceptually, J constitutes a quantum information-theoretic analogue of dynamical activity (or frenesy)
in stochastic thermodynamics [1},2. While entropy production measures the time-asymmetric drift toward
equilibrium (the “traffic asymmetry”), dynamical activity measures the total volume of kinetic events (the
“traffic volume”) regardless of direction. In our PQS framework, J integrates the absolute speed of evolution
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S|, treating reordering (negative entropy production) as a costly active process rather than a reversal of time.
This connects our functional to the study of active phase transitions where the order parameter is the total
activity of the trajectory.

The key technical tool is the Past Quantum State (PQS) formalism. An observer who knows both the
initial preparation and the terminal POVM outcome infers, at each intermediate time #, a smoothed state

(1= EOpEDTP W
Psmooth Tr[E(t)p(t)] s
where E (¢) is the backward-evolved effect operator from the terminal measurement [[12}/13]]. This symmetric
update refines the observer’s inference without altering the underlying dynamics. The throughput J is
computed from this smoothed trajectory.

Our central finding is that J(1) exhibits a sharp crossover as the coherent control parameter A increases:
from a decoherence-dominated regime where little thermodynamic work is done, to a saturated high-throughput
phase. The susceptibility y = |dJ/dA| peaks at the balance point where coherent and dissipative rates are
comparable. This peak sharpens with system size, obeys finite-size scaling, and coincides with suppression of
the Liouvillian gap. An adaptive control law can tune the system to this window and hold it there.

These results support a Principle of Critical Throughput, stated precisely in Section 4]

2 SETTING AND MODEL
2.1 GENERAL FRAMEWORK

We adopt a minimal framework: a fixed CPTP Lindblad semigroup with generator £ and unique stationary
state pg. Only coherent (Hamiltonian) parameters vary; dissipative channels are fixed. A terminal POVM
element F at 7 induces a backward effect E(z) via E(t) = LT[E(1)] with E(ty) = F.

These assumptions yield two entropy-production rates. The physical Spohn rate [11], osponn(?) =
—d%D(p(t) || pss), depends only on the forward state. The PQS rate, opgs(f) = —%D(psmooth(t) Il Oss)»
quantifies activity of the smoothed trajectory conditioned on both boundaries. Only opgs(?) enters the
throughput functional J. (Here D(p||o") = Tr[p(log p —log 07)] denotes quantum relative entropy; we reserve
S(p) = —Tr[plog p] for von Neumann entropy.)

2.2 XX+727Z CHAIN WITH LOCAL DEPHASING

We study n-qubit chains (n = 2, .. ., 8) with Hamiltonian

H =6, Z O')Ei)O')Ej) + 6> Z o-z(i)O'Z(j), 2)
(.7 (@.7)
and local dephasing on each qubit:

n

Lipl =—ilH,pl +y ) (Z;pZ; - p). 3)
Jj=1

The ZZ coupling (8, = 0.5) breaks integrability; the dephasing rate is y = 0.1. This Liouvillian is unital
with pss = ¥/d. We define the control parameter A = |6;|/y, the dimensionless ratio of coherent drive to
dephasing.

To quantify the balance between coherent and dissipative dynamics, we define operational rates:
Teon(A) = ||[[H, p]lI/|lpl] evaluated at a reference state (the time-averaged smoothed state), and I'yec = 2ny
(the total dephasing rate). The coherence-decoherence balance point A is where I'cop(A¢e) & [gec.

Default parameters: T = 4.0, N = 200 time steps, initial state p(0) = |0---0)(0- - - 0|, terminal POVM
F=10---0){0---0|.



Entropy Throughput in Open Quantum Systems 3

3 FRAMEWORK

3.1 THE ENTROPY-THROUGHPUT FUNCTIONAL

Given terminal POVM element F, the backward effect E (r) evolves via E (1) = LT[E(r)] with E(z r)=F.
The PQS smoothed state is
EM'2p) E('?
Tr[E(1)p(1)]
which is positive and normalized. The weight w(¢) = Tr[E (#)p(t)] equals the terminal outcome probability
P(F) and is constant under CPTP evolution, ensuring no-signaling (Appendix D). We restrict to post-selections
with P(F) > 1073 to ensure numerical stability; robustness across this range is verified in Appendix
We define the entropy-throughput functional as

“

Psmooth (t ) =

iy
1) = [ fovos(eia, e, )

Iy
where opgs (1) = —%D( Psmooth (1) || 0ss) 1s the PQS entropy rate.

3.2 PHYSICAL INTERPRETATION

While unconditional states relax monotonically toward equilibrium, post-selected trajectories must often
move away from the steady state to satisfy the future boundary condition. These “reordering” intervals
(opgs < 0) represent information-theoretic effort: activity that an observer with two-time information would
infer the system performed. The functional J sums the absolute magnitude of both relaxation and reordering,
measuring the total logical distance traveled in the retrodicted trajectory.

We emphasize that J is computed from the smoothed (inferential) state psmoom (¢), not the physical forward
state. It quantifies information-processing cost from the perspective of a controller or observer who knows
both boundaries, not physical entropy production in the thermodynamic sense. This distinction is essential: J
measures what an informed agent would infer was required, not what a calorimeter would measure.

Mathematically, J is the total variation of D (psmooth(?)|pss) Over [to,?r]: a path-length in entropy space
that captures activity even when net entropy change vanishes. For the unital dynamics considered here,
where pg = ¥/d, we have D (pl|¥/d) = logd — S(p), so J reduces to the total variation of the smoothed von
Neumann entropy.

Why total variation rather than signed integral or quadratic cost? The absolute value treats both relaxation
and reordering as informational effort: the minimal direction-agnostic path length for a scalar Lyapunov-like
quantity. Alternatives such as / D™ (counting only entropy production) or / D? (quadratic speed) weight the
two directions asymmetrically or penalize speed nonlinearly. Total variation is the natural measure when
both directions represent active processing and the cost is proportional to distance traveled, connecting J to
thermodynamic length and entropy-based speed limits [3}/15].

3.3 DEPENDENCE ON TERMINAL POVM

Because pgmooth () depends on the backward effect E(¢), the functional J(A; F') depends on the chosen
post-selection. Section shows that varying F' reshapes the time-resolved profiles opgs(#) while leaving
the coherence-decoherence balance regime essentially unchanged: the critical window is a property of the
dynamics, not an artifact of the boundary choice.
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Figure 1: Entropy-throughput crossover and boundary sensitivity. (a) PQS-based entropy throughput
J(A) (pale curve, left axis) and finite-difference susceptibility y (1) (blue markers, left axis) as functions of
the control ratio A = |6;|/y, together with the operational coherence and decoherence rates I'con(A4), Tgec
(right axis). The susceptibility peaks near the balance point 1. where I'con = [gec, While J(2) saturates
for A > A.. (b) Time-resolved PQS entropy rate opgs(#) at 4 = A, for two different terminal POVM
elements Fyy = [00)(00| and Fj; = [11){11]|. Different post-selections produce distinct temporal profiles
while preserving the overall throughput magnitude. (c) Heat map of the average entropy throughput J(6,y)
over a two-dimensional sweep of coherent drive strength 6; and dissipation rate .
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4 RESULTS
4.1 FINITE-SIZE SCALING AND SUSCEPTIBILITY COLLAPSE

The two-qubit and three-qubit results establish the entropy-throughput crossover and the operational suscepti-
bility peak, but a strong dynamical criticality claim requires evidence that the peak sharpens and organizes
under system-size variation in a manner consistent with finite-size scaling (FSS). To this end, we compute
J(2) and y (1) = |dJ/dA| for an n-qubit XX+ZZ chain with local dephasing forn =3, ..., 8.

Entropy Throughput Susceptibility

5333533
PA G T
alabid

= |dJ/dA|

X(A)

3
A=ty A

Figure 2: Finite-size scaling. Left: throughput curves J(1) forn = 3,...,8. Right: susceptibility curves
x () = |dJ/dA| showing a dominant peak whose height grows with n, consistent with an increasingly sharp
CTOSSOVver.

The peak location A, (n) exhibits finite-size drift at these sizes, but ymax (n) increases substantially with 7:
from ymax & 1.5atn =310 ymax ® Satn = 8.

To quantify the scaling organization, we test the standard collapse Ansatz y = y(4,n)n™ % and x =
(1 = A¢) n'/Y. Minimizing the mismatch across sizes yields the data collapse shown in Fig. [3| with fitted
parameters A, = 3.2 +£0.3, k = 0.85 £ 0.15, and v = 1.2 + 0.3 (uncertainties from bootstrap resampling over
the fitting window |1 — A.| < 3). The curves for n = 3 to 8 fall onto a single master curve, confirming that the
susceptibility peak organizes according to finite-size scaling. Given the limited size range (n < 8), we interpret
this as evidence for a sharp crossover with FSS-like organization rather than a definitive thermodynamic
phase transition.

4.2 DYNAMICAL SIGNATURE: GAP STRUCTURE ACROSS THE CROSSOVER

Finite-size scaling of y (1, n) provides a static organization test. To add an independent dynamical signature,
we compute the Liouvillian spectral gap A(A1) via sparse eigenvalue methods. The spectral gap is the
eigenvalue with smallest nonzero real part magnitude; smaller A indicates slower relaxation toward the steady
state.

Figure [ shows A(1) for n = 3,5, 7. The gap is strongly suppressed at low 4 (A ~ 0.002-0.003), grows
monotonically through the crossover, and saturates near 2y at high A. Crucially, the crossover region where
X peaks lies in the slow-relaxation portion of this curve: A is intermediate between the heavily suppressed
low-A regime and the fast-relaxing high-A phase. This is not a gap minimum at A., but rather a dynamical
separation: the susceptibility peak occurs where the system transitions from slow to fast relaxation. The
crossover thus separates two dynamically distinct regimes.

4.3 ADAPTIVE SELF-TUNING TO THE MAXIMAL-SENSITIVITY REGIME

The susceptibility peak identifies a window of maximal sensitivity. Can a system find this regime without an
external agent knowing the model parameters? We introduce a slow adaptive control variable Ay that updates
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Figure 3: Quantitative susceptibility data collapse. Rescaled susceptibility curves y = y/n* versus
x = (41— A.)n'"” collapse onto a common curve with fitted parameters, supporting finite-size scaling
organization of the critical-throughput regime.
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Figure 4: Liouvillian spectral gap versus control parameter. The spectral gap A(A) forn = 3,5,7 is
suppressed at low A and increases monotonically through the crossover regime, saturating near 2y = 0.2 at
high A. The susceptibility peak A. lies in the transition region between slow (A <« 2y) and fast (A = 2y)
relaxation, marking a dynamical boundary rather than a gap minimum.
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based on sensitivity measurements:

Ak+1 = clip(Ax + 7 Axk + 0 Eks Amin, Amax) » 6)

where Ay = (x (Ax + 8) — x (A — 6))/(26) is a finite-difference gradient estimate.

This update requires evaluating y at two nearby points Ax + ¢, so the agent performs a two-sided probe at
each step. This is not purely local in the strictest sense: the controller must run two short experiments (or
access two historical records) per update. The measurement cost scales as O (1) evaluations per step, not
O(n) or O(d), making it feasible for small systems. Figure [5|demonstrates that this feedback loop acts as an
attractor.

This result suggests a mechanism for self-organized criticality: if a system possesses self-regulatory
mechanisms capable of sensing throughput gradients (e.g., energetic penalties for error correction, or access
to recent performance logs), local feedback naturally drives the control parameter toward the critical window
and holds it there.

Adaptive Self-Tuning: Controller Finds and Holds Critical Window
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Figure 5: Adaptive self-tuning to maximal sensitivity. Top row: susceptibility landscape y (1) forn = 3,4, 5,
with the critical point 1. marked (dashed line) and the critical window shaded. Bottom row: post-burn-in
distribution of the adaptive controller’s position Ax. The controller finds and holds the critical window: the
histogram mean matches A, within statistical noise.

4.4 CORRELATIONS IN THE PQS-SMOOTHED STATE

Since the unconditional steady state is maximally mixed, correlation structure must be assessed in Psmooth (Z)-
We compute connected correlators C(r) = (O;0;4r)pgs — {Oi)pgs{Oi+r)pgs (With O = o) at intermediate
times. Near A., the magnitude |C(r)| is enhanced compared to the decoherence-dominated regime, and fitting
|C(r)| ~ e"/¢ yields a correlation-length proxy &(1) that peaks in the crossover region. For n = 3,4,5
(larger sizes become computationally prohibitive for this observable), the extracted & increases by a factor

of 2-3 as A approaches A, from below, consistent with the buildup of spatial correlations characteristic of
critical regimes.
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4.5 ROBUSTNESS AND GENERALITY

The crossover is not a discretization artifact: varying T and N leaves J(1) and A, unchanged (Appendix [E).
Different initial states and terminal POVMs reshape the detailed curves but preserve the crossover region
(Fig. b), Appendix @) A forward-only functional Jsponn () based on the unconditional Spohn rate varies
smoothly with A and shows no sharp crossover (Fig. [6)), confirming that the crossover is a genuine two-time
effect. Alternative coherence measures (£-coherence, relative-entropy coherence) shift the location of A, but
preserve the peak (Appendix [F).

Scope and limitations. The present study uses unital dephasing channels with a maximally mixed steady
state. For non-unital channels (e.g., amplitude damping), the steady state ps, # ¥/d and the relationship
D(p|lpss) = logd — S(p) no longer holds. We expect the crossover phenomenology to persist (coherent
drive still competes with dissipation), but the quantitative details may differ. Additionally, with n < 8 qubits,
our finite-size scaling is suggestive but not definitive; we avoid strong claims about universality class or
thermodynamic limits.

Postselection probability. We threshold P(F) > 10~ for numerical stability. Varying this threshold
within [107%, 10~!] shifts the absolute scale of J but leaves the crossover location .. unchanged to within 10%
(Appendix El) Extremely rare postselections (P(F) < 10~*) amplify numerical noise but do not qualitatively
alter the critical window.

PQS vs forward-only Spohn entropy throughput
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Figure 6: PQS vs forward-only entropy throughput. Comparison between the PQS-based throughput
Jpqs(4) and a forward-only Spohn-based functional Jsponn(4) constructed from the unconditional state and
the physical entropy-production rate. While Jspona(4) varies smoothly with the control ratio 4, the PQS
functional exhibits a sharp crossover and saturation, underscoring that the finite-interval extremum is a
genuine two-time (PQS) effect rather than a generic feature of forward entropy production.

Principle of Critical Throughput. Based on the sharp crossover, susceptibility peak, finite-size scaling,
and gap suppression observed here, we propose:

Principle of Critical Throughput. Open quantum systems achieve maximal entropy throughput
at the coherence-decoherence balance point. The susceptibility xy (1) = |dJ/dA| peaks where
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Iecoh = Ddec, this peak sharpens with system size, and the regime acts as an attractor under local
feedback. Coherence-decoherence balance is an organizing principle for information processing
in finite-resource quantum systems.

The principle is falsifiable: systems where the susceptibility does not peak at coherence-decoherence
balance, or where the peak does not sharpen with size, would constitute counterexamples. Fine-tuned
configurations (decoherence-free subspaces, dark states) can evade this balance, but they occupy measure-zero
regions of parameter space. In generic settings, the critical-throughput regime is robust.

Computational details. Convergence is verified by repeating scans for (7, N) ranging from (4.0, 200) to
(8.0, 800); results are stable within a few percent (Appendix [E). Figure[I(b) compares entropy rates for two
terminal projectors Foo and Fy; at A = A.. The distinct profiles reflect differences in retrodicted histories, not
in the underlying dynamics.

4.6 BOUNDARY-CONDITION DEPENDENCE OF PQS ENTROPY RATE

Different terminal POVM elements (Fyo vs. Fi) reshape the time-resolved entropy profiles opgs(#) but yield
comparable integrated throughput J near . (Fig.[I[b)). The critical window is a property of the dynamics,
not an artifact of the boundary choice.

Figure[I|c) shows J over a (6;,y) grid. A bright ridge of high throughput tracks 6, /y ~ const, consistent
with coherence-decoherence balance. This ridge acts as a robust finite-size phase boundary.

Two-boundary conditioning respects no-signaling: the backward effect E (¢) is inferential and does not
alter forward dynamics (Appendix D).

5 CONCLUSIONS

We have introduced the entropy-throughput functional J and shown that it reveals a sharp dynamical crossover
in open quantum systems: as coherent control increases, the system transitions from a decoherence-dominated
regime to a saturated high-throughput regime. The susceptibility y = |dJ/dA| peaks at the coherence-
decoherence balance point. This peak sharpens with system size and coincides with a transition from slow to
fast relaxation dynamics.

Three features distinguish this crossover from a smooth variation:

1. Finite-size scaling: The susceptibility peak height grows with n, and rescaled curves collapse onto a
master function with fitted exponents « ~ 0.85, v ~ 1.2.

2. Dynamical separation: The Liouvillian spectral gap A(1) transitions from suppressed values at low A
to saturation at high A; the crossover marks the boundary between slow and fast relaxation.

3. Attractor dynamics: A simple adaptive control law tunes the system to the critical window and holds
it there.

We propose a Principle of Critical Throughput: open quantum systems achieve maximal information-
processing capacity at the coherence-decoherence balance point, and this regime acts as an attractor under
local feedback. The principle is falsifiable: systems for which the susceptibility does not peak at coherence-
decoherence balance, or for which the peak does not sharpen with size, would constitute counterexamples.

A definitive assignment of universality class would require larger system sizes. But the present evidence
(finite-size collapse, spectral gap suppression, and attractor dynamics) establishes the critical-throughput
regime as a robust organizing feature of finite-size open quantum systems.
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A. Derivation of the Smoothed State
The smoothed state follows from symmetric conditioning (the Aharonov-Bergmann-Lebowitz rule):
E@)'Pp()E(1)'

Tr[E(1)p(1)]

This state incorporates information from both boundaries and represents the most informed estimate given
past preparation and future measurement. The forward dynamics remain unchanged; only the observer’s
inference is modified. All quantities in J are computed from psmooth (7).

)

Psmooth (t ) =

B. Maximum Caliber Interpretation of the Weight

The time-local weight w(t) = Tr[E(¢) p(#)] admits a Maximum Caliber interpretation. MaxCal assigns
probabilities to trajectories by maximizing path entropy subject to dynamical and boundary constraints.
Imposing the terminal constraint that the experiment ends in outcome F' reweights the unconditioned trajectory
ensemble:

Ply | Fl < Poly] Te[F py (15)]. ®)

Using the duality Tr[A®(B)] = Tr[®'(A)B] and the backward evolution E(f) = <I>Z et (F), the reweighting
factor at intermediate time ¢ is precisely Tr[E(¢) p(¢)] = w(?).

Thus the PQS weight coincides with the MaxCal trajectory reweighting under terminal constraints. The
rigorous justification comes from PQS and quantum smoothing theory; MaxCal provides an interpretive
framework connecting two-time conditioning to path-entropy maximization.

C. TSVF Weak Values and Weight Consistency

For unitary, pure-state evolution with initial state |/o) and terminal postselection onto |¢), the PQS conditioned
expectation of an observable A reduces to the standard Two-State Vector Formalism (TSVF) result. The PQS
expression

TrlA E
(A (1) = THAPWEO] ©)

w(r)
becomes the weak value (Adyeax = Re% when p = |yX¢| and E = |¢pXp|. The weight

w(t) = Tr[E(t)p(1)] = | {¢(1)|¢ (1)) |? is precisely the TSVF normalization. This consistency confirms that
our entropy-throughput construction uses the canonical two-time conditioning.

D. No-Signaling Proof

Two-boundary conditioning preserves no-signaling. For an early measurement with outcomes a and a later
POVM {F}}, the marginal p(alx) = Y, p(a, b|x) is independent of the POVM choice because Y, F, = ¥
and forward evolution is trace-preserving. The backward effect E(r) is a retrodiction tool (it requires
post-selection on future outcomes and cannot be known before time ¢), not a physical signal [[14].

E. Numerical Protocols

For small systems (n = 2, 3) we exponentiate the Lindblad generator £ as a matrix in Liouville space. For
larger chains (n = 3-8), we implement the Liouvillian action directly on density-matrix elements using bit
operations and integrate with RK4. The PQS entropy rate is computed by centered finite differences of
the relative entropy. The Liouvillian spectral gap A is computed directly via sparse eigenvalue methods
(shift-invert mode targeting eigenvalues near zero) forn = 3,5, 7.
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Default parameters: T = 4.0, N = 200, v = 0.1, 8, = 0.5. Robustness is verified by varying (7, N) and
confirming stability of J(1), y (1), and A.. Code: github.com/MiguelDelao/q-crit.

F. Additional robustness data

Figure[7} varying (T, N) leaves J (1) and the susceptibility peak unchanged. Figure[8} varying initial states and
terminal POVMs reshapes the detailed curves but preserves the crossover band. Figure[9} alternative coherence
measures ({1, relative-entropy) produce balance points in the same region, confirming metric-independence
of the critical window.

Discretization robustness of J(A) Discretization robustness of susceptibility
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Figure 7: Discretization robustness. PQS throughput /(1) and the associated susceptibility |dJ/dA| for
several choices of total time 7 and number of time steps N. The curves and the inferred crossover location A,
remain stable across the tested discretizations.

G. Three-qubit chain model

A three-qubit XX+ZZ chain with Hamiltonian H = 6(0')51)0')52) + O')SZ)O')(CS) + 0'2(1)0'2@ + Uéz) a'z(3)) and local
dephasing rate y exhibits identical phenomenology (Fig.[I0): sharp crossover in J(1), susceptibility peak at
I'coh ® I'gec = 3. The critical-throughput regime is generic.
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Figure 8: Dependence on preparation and terminal POVM. Top: PQS throughput J(A) and susceptibility
for different initial states, including product states, Bell states, and the maximally mixed state. Bottom: the
same quantities for different terminal POVM elements F. In all cases the detailed shape of J(4; F) changes,
but a common crossover band separates a low-throughput regime from a saturated high-throughput regime.
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Coherence-decoherence balance for different coherence measures
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Figure 9: Coherence-decoherence balance: comparison of coherence measures. Effective coherence rates
defined via a commutator norm, ¢;-coherence, and relative-entropy coherence, rescaled to allow comparison
with the fixed decoherence rate I'gec = 27y. All three measures identify a coherence-decoherence balance
window in the same intermediate range of A, supporting the metric-independence of the crossover.

3-qubit chain: PQS throughput and rate balance
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Figure 10: Three-qubit chain results: PQS throughput and rate balance. Entropy throughput J(1),
susceptibility (rescaled), and coherence/decoherence rates for a three-qubit XX+ZZ chain with local dephasing.
As in the two-qubit model, a pronounced susceptibility peak and a high-throughput crossover occur near the
point where the coherence and decoherence rates balance.
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