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ABSTRACT

We present Critical Code Theory, a theoretical framework in which the quantum vacuum is a
tessellation of Steane [[7, 1, 3]] error-correcting code cells on the triangular (𝐴2) lattice. The
framework derives from a single optimization principle: maximize information throughput
subject to stability. This selects both the lattice geometry and the code structure.
The Steane code is characterized by three integers: 𝑛 = 7 physical qubits, 𝑘 = 1 logical qubit,
𝑑 = 3 distance. Its automorphism group is PSL(2, 7) of order 168. From these inputs alone, the
framework derives:
The Standard Model gauge group from Fano plane geometry. Three fermion generations from
the incidence partition. Quark and lepton charges from incidence counting with offsets fixed by
anomaly cancellation.
The fine-structure constant from code capacity, matching experiment to 5 × 10−8. The Weinberg
angle from the ratio of stabilizer sectors, matching to 0.2%. The anomalous magnetic moment
coefficients from code ratios.
The proton-electron mass ratio from automorphism group averaging, matching to 0.008%. Nine
charged fermion masses spanning five orders of magnitude from spectral propagation, with mean
error 1%. The Higgs vacuum expectation value from the automorphism count, matching to 0.3%.
Hadron masses as integer combinations of a mesonic quantum, with mean error below 1%.
The Schwarzschild coefficient and Bekenstein-Hawking entropy factor from code protection
ratios. Dark energy as boundary-limited error-correction exhaust. The Hubble constant from the
Hilbert space dimension of a single code cell, matching to 0.6%. The cosmological constant
suppression from the same double exponential.
The framework makes falsifiable predictions: a specific tensor-to-scalar ratio, neutrino mass sum,
and leptonic CP phase; no axion; no supersymmetric partners. In total, over 80 quantities are
derived from the code parameters across particle physics, nuclear physics, and cosmology.
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Part I: The Framework
1 INTRODUCTION

If spacetime is a quantum error-correcting code, which code is it? The holographic principle established
that bulk physics is encoded on a boundary. Almheiri, Dong, and Harlow showed this encoding has the
structure of a quantum error-correcting code. This raises a concrete question: what are the code’s parameters,
and why those values? This monograph proposes a single answer: the vacuum is the Steane [[7, 1, 3]]
code, tessellated on the triangular (𝐴2) lattice, operating at its critical throughput threshold. This structure
is uniquely selected by an optimization principle: among all codes and geometries, the vacuum maximizes
information throughput subject to stability. From this structure, we derive: particles as stabilizer defects,
forces as stabilizer fluctuations, the Standard Model gauge group from the code’s symmetry, coupling constants
from its capacity, the complete fermion mass spectrum from spectral propagation, and gravity from the
code’s response to dynamical load. These arrive as consequences of the code’s structure and its optimization
principle.

A Note on Approach. This monograph presents an information-theoretic framework for fundamental physics,
developed from an engineering perspective. The throughput principle was applied first. Then, the Fano plane
and Steane code emerged as the unique solution. From there, the microscopic input is treated as fixed, and
each consequence is pursued as far as possible, asking what follows for charges, for masses, for coupling
constants, and for cosmology. Numerology is a natural first objection. The standard applied throughout is
structural coherence. The space of admissible statements is sharply constrained by the Steane–Fano data
and its symmetries, and the quantitative claims are limited by this geometry without adjustable parameters.
The reader is asked to evaluate the work by whether the same fixed primitives close consistently across
independent sectors, and by whether that closure remains coherent when the results are taken together. The
exposition is deliberately direct. Claims are stated as derivations to emphasize the framework’s sprawling
explanatory scope. Each major result is accompanied by a formula expressing the prediction in terms of code
parameters, and by comparison to experimental values. The goal is clarity of structure.

Notation. (𝑛, 𝑘, 𝑑) = (7, 1, 3) denotes the Steane code parameters (physical qubits, logical qubits, distance).
|PSL(2, 7) | = 168 is the automorphism group order. 𝑁inc is Fano incidence number. 𝐽stab is stabilizer
coupling strength. J is entropy throughput. 𝑈 = 𝛼−1𝑚𝑒 is the mesonic quantum. Newton’s constant is 𝐺N.

1.1 THE CENTRAL CLAIM

The vacuum is a quantum error-correcting code operating at its critical threshold. All of physics
is the emergent behavior of that code.

This has three components:
Discrete. Spacetime consists of discrete units of information on a triangular lattice, each unit a qubit of

the Steane code.
Active. The vacuum maintains itself against decoherence through continuous error correction. This

maintenance has a thermodynamic cost; that cost is physics.
Critical. The vacuum sits at the phase transition between order and disorder. This regime maximizes

information processing capacity. The parameters of physics are consequences of this single constraint.
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Structural Constraint. In what follows, a statement is structural when it is fixed by invariants of the selected
data: the code parameters (𝑛, 𝑘, 𝑑), Fano incidence, PSL(2, 7) symmetry, and Heawood eigenvalues 𝜆1 = 3,
𝜆2 =

√
2. No auxiliary tunable parameters enter. When a frame choice is required (e.g., a syndrome basis),

physical quantities are required to be invariant on the full PSL(2, 7) orbit of that choice.

1.2 STRUCTURE OF THE MONOGRAPH

The argument proceeds in layers:
• Part II: Foundations. The throughput principle and geometric selection. Why the triangular lattice and

the Steane code are uniquely selected by optimization.
• Part III: The Vacuum Code. The Steane [[7, 1, 3]] code and Fano plane geometry. Stabilizers, syndromes,

and the (3, 3, 1) incidence partition.
• Part IV: Matter. Particles as stabilizer defects. Electric charge and generation number from Fano incidence.

The particle dictionary.
• Part V: Forces. Gauge fields as stabilizer fluctuations. The Standard Model gauge group from code

symmetry. Resolution of the strong CP problem.
• Part VI: Continuum Emergence. How continuous spacetime and Lorentz symmetry emerge from the

discrete lattice in the long-wavelength limit.
• Part VII: Coupling Constants. The fine-structure constant from code capacity. The Weinberg angle. The

anomalous magnetic moment. Electroweak precision observables.
• Part VIII: The Mass Hierarchy. The unified mass formula. Spectral corrections from the Heawood graph.

All charged fermion masses. Neutrinos. Hadrons. The proton-electron mass ratio. Mixing angles.
• Part IX: Spacetime and Cosmology. Gravity from throughput optimization. Black holes as code failure.

Dark energy from boundary-limited correction. The Hubble constant. Cosmological parameters.
• Part X: Assessment and Conclusion. Summary of predictions organized by precision tier. Falsification

criteria.

1.3 RELATED WORK

Critical Code Theory synthesizes several research programs: Wheeler’s “It from Bit,” the holographic
principle (’t Hooft, Susskind, Bekenstein), its realization as error correction (Almheiri-Dong-Harlow, HaPPY),
and thermodynamic gravity (Jacobson, Verlinde). Discrete-substrate programs (loop quantum gravity, causal
sets, the Wolfram Project) share the premise of discrete spacetime but do not derive quantitative predictions
for the Standard Model. What distinguishes this framework is the claim that the vacuum code is uniquely
determined by throughput optimization, yielding parameter-free predictions across particle physics, nuclear
physics, and cosmology.

1.4 WHY THROUGHPUT

Entropy throughput J measures how much information a system processes per unit time while maintaining
stability. This functional peaks at the critical boundary between coherent and dissipative regimes. We use it
as a selection principle: maximize J over admissible microscopic structures subject to locality, isotropy, and
stability. This selects the triangular lattice, the Steane code, and the stabilizer Hamiltonian. Part II develops
the principle in detail.
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Part II: Foundations
2 THE THROUGHPUT PRINCIPLE

Open quantum systems evolve under competing influences: coherent dynamics preserve structure; dissipation
destroys it. The balance between them determines how much information a system can process. We define
entropy throughput J as the total thermodynamic distance traveled along a trajectory, counting both relaxation
toward equilibrium and movement away from it. This functional exhibits a sharp crossover. At low coherent
drive, dissipation dominates and throughput is small. At high coherent drive, the system saturates. At the
boundary, where coherent and dissipative rates are comparable, the susceptibility 𝜒 = |𝑑J/𝑑𝜆 | develops a
pronounced peak. This peak is the signature of criticality, and it sharpens with system size. This critical
regime acts as an attractor. Systems with local feedback converge to the balance point and remain there. We
summarize these results as the Principle of Critical Throughput: open quantum systems achieve maximal
information-processing capacity at the coherence-decoherence balance point. This regime is self-organizing.
The precursor paper, “Entropy Throughput, Dynamic Critical Regimes, and Adaptive Self-Tuning in Open
Quantum Systems,” provides the full examination. We use this principle in a single way: maximize J
over admissible microscopic structures subject to locality, isotropy, and stability. Once those admissibility
constraints are fixed, the remaining content is the evaluation of that maximization in geometry (substrate),
code (cell), and dynamics (Hamiltonian).

3 THE VACUUM HAMILTONIAN

The triangular lattice has coordination number 6: each site has 6 neighbors. A site together with its neighbors
forms a 7-site hexagonal motif. This is the natural embedding for a 7-qubit code. Consider the space of
Hermitian operators on 7 qubits (dimension 214). We parameterize Hamiltonians in a basis of single-qubit
terms, stabilizer terms, and two-body interactions. For each, we compute entropy throughput under Lindblad
evolution with local dephasing. The optimization problem: find the Hamiltonian that maximizes throughput.
Both gradient-based and global search methods converge to the same structure:

𝐻∗ = −𝐽stab

3∑︁
𝑎=1

(
𝑆
(𝑎)
𝑋

+ 𝑆 (𝑎)
𝑍

)
(1)

This is the stabilizer Hamiltonian of the Steane code. The ground state is the code space; excited states
correspond to syndrome sectors. The optimized Hamiltonian concentrates over 80% of its weight on the six
stabilizer generators. The X and Z sectors couple equally (𝐽𝑋/𝐽𝑍 ≈ 1). Single-qubit and two-body terms are
suppressed. Ground state degeneracy is 2, matching the logical dimension. The self-dual structure of the
Steane code is selected by throughput optimization.

4 GEOMETRIC SELECTION

Consider a discrete network with information stored at nodes and transmitted along edges. Two properties
determine its information-processing capacity.

Capacity. The density of edge cuts per unit boundary length. Following the holographic principle,
information scales with boundary area.

Speed. The rate at which information equilibrates. The spectral gap of the network Laplacian sets this
timescale.

https://migueldelao.org/entropy-throughput.pdf
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Throughput is the product of capacity and speed: the bit-rate of the network as an information channel. We
apply this functional to two-dimensional tilings. Three regular tilings exist: triangular (coordination 6), square
(coordination 4), and hexagonal (coordination 3). The triangular lattice maximizes throughput. It packs 15%
more capacity per unit area than the square lattice, with comparable spectral gap. Three independent results
support this selection.

Optimal sampling (Petersen-Middleton, 1962). The triangular lattice minimizes information loss when
sampling a continuous signal at fixed density.

Mechanical rigidity (Maxwell, 1864). The triangular lattice is exactly rigid: no floppy modes, no
redundant constraints. The square lattice shears; the hexagonal is softer.

Isotropic propagation. The discrete wave equation on the triangular lattice produces an effectively
isotropic dispersion relation. The 6-fold symmetry suppresses anisotropy.
When throughput is optimized under a planarity constraint, the average degree converges to 6. Maximal
planar triangulations achieve the highest throughput. The triangular lattice has additional properties relevant
to the framework:

Duality. The dual is the honeycomb lattice. Low-energy excitations on the honeycomb exhibit linear
dispersion, the lattice origin of relativistic kinematics.

Rigidity. The triangular lattice resists deformation without redundant constraints. This becomes relevant
for gravity in Part IX.

Isotropy. At long wavelengths, the lattice looks the same in all directions. This is necessary for emergent
Lorentz symmetry, developed in Part VI.
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Part III: The Vacuum Code
5 THE STEANE CODE

The vacuum of Critical Code Theory is a tessellation of Steane [[7, 1, 3]] quantum error-correcting code
cells. This choice is uniquely determined by the physical requirements for a quantum substrate. Any quantum
vacuum that persists over macroscopic timescales must protect information against decoherence. Without
error correction, the vacuum would thermalize on Planck timescales. Stable matter and coherent quantum
phenomena persist over seconds, years, and cosmological ages. This persistence requires quantum error
correction built into the fundamental structure. The minimal requirement is distance 𝑑 ≥ 3. The code must
correct arbitrary single-qubit errors. This axiom ensures that the vacuum tolerates local perturbations without
losing quantum coherence. Given this requirement, which code should we choose? The quantum Hamming
bound constrains how efficiently a code can correct errors:

⌊ (𝑑−1)/2⌋∑︁
𝑗=0

3 𝑗
(
𝑛

𝑗

)
≤ 2𝑛−𝑘 . (2)

For 𝑑 = 3 and 𝑘 = 1 (encoding one logical qubit), this requires at least 𝑛 ≥ 5 physical qubits. The five-qubit
code [[5, 1, 3]] saturates this bound but fails our requirements: it is not a CSS code and does not support
transversal Clifford gates. The asymmetry between bit-flip and phase-flip errors would require explanation,
violating parsimony. The Steane [[7, 1, 3]] code is the minimal self-dual CSS code with distance 3. Its CSS
structure treats 𝑋 and 𝑍 errors symmetrically. The 𝑋-stabilizers and 𝑍-stabilizers share identical algebraic
structure, making the code self-dual. Transversal implementation of all Clifford gates is supported. No
smaller code satisfies all these requirements (§A).

6 THE FANO PLANE

The stabilizer structure of the Steane code is determined by the Fano plane, the unique projective plane of
order 2. This finite geometry consists of 7 points (physical qubits) and 7 lines (stabilizer generators), with
incidence structure (3, 3, 1): each line contains 3 points, each point lies on 3 lines, and any two lines intersect
in exactly 1 point. This structure is unique up to isomorphism and determines the particle content of Part IV.
The Steane code has 6 stabilizer generators, 3 of 𝑋-type and 3 of 𝑍-type. Each stabilizer acts on 4 qubits
corresponding to the complement of a Fano line. Explicitly:

𝑆𝑋,1 = 𝑋3𝑋5𝑋6𝑋7 𝑆𝑍,1 = 𝑍3𝑍5𝑍6𝑍7 (3)
𝑆𝑋,2 = 𝑋1𝑋2𝑋5𝑋6 𝑆𝑍,2 = 𝑍1𝑍2𝑍5𝑍6 (4)
𝑆𝑋,3 = 𝑋2𝑋3𝑋4𝑋5 𝑆𝑍,3 = 𝑍2𝑍3𝑍4𝑍5 (5)

The self-duality is manifest: the support patterns for 𝑋 and 𝑍 stabilizers are identical. The code space is the
joint +1 eigenspace of all six stabilizers, and the logical operators 𝑋̄ and 𝑍̄ commute with all stabilizers but
lie outside the stabilizer group. The automorphism group of the Fano plane is PSL(2, 7), a simple group
of order 168. This symmetry acts transitively on both points and lines, meaning that no point or line is
geometrically distinguished from any other. The Steane code inherits this full symmetry. The symmetry of
the Fano plane extends beyond its automorphism group. The incidence graph, formed by connecting each
point to each line it lies on, is the Heawood graph: a 3-regular, bipartite network on 14 vertices. This graph is



Critical Code Theory 8

Figure 1: Three equivalent representations of the Steane code structure. Left: The Fano plane, with 7 points
(qubits) and 7 lines (stabilizers) in (3, 3, 1) incidence. Colored lines (red, green, blue) show a measurement
basis; gray lines show remaining stabilizers; the dashed circle is the logical operator support. Center: The
same structure embedded on the 𝐴2 lattice as a hexagonal cell with central qubit. Right: The Heawood graph,
the incidence graph where circles are qubits and squares are stabilizers. An edge connects qubit to stabilizer
iff the qubit lies on that line. Node colors indicate incidence count: yellow-green (𝑁inc = 2), cyan (𝑁inc = 1),
orange (𝑁inc = 0).

a Ramanujan graph, meaning its non-trivial eigenvalues achieve the spectral bound |𝜆 | ≤ 2
√

2 for 3-regular
networks. Ramanujan graphs are the most efficient structures for spreading information: a perturbation at any
vertex disperses uniformly to all other vertices in minimal time, with no localized echoes or trapping. For the
vacuum code, this property guarantees that error syndromes propagate through the stabilizer graph as rapidly
as geometry permits. Local errors cannot accumulate or resonate. The vacuum thermalizes instantaneously at
the code scale, ensuring the uniformity required for macroscopic stability.

7 EMBEDDING ON THE 𝐴2 LATTICE

The Steane code’s 7 qubits embed naturally on the 𝐴2 (triangular) lattice as a hexagonal plaquette with a
central site. The minimal embedding places qubit 1 at the center of a hexagon and qubits 2 through 7 at the
vertices of the surrounding hexagon. This arrangement respects the 𝐶6 rotational symmetry of both the lattice
and the code, with the stabilizer generators corresponding to rhombic 4-qubit patches within this structure.
The vacuum is a tessellation of such hexagonal patches, tiling the 𝐴2 plane. Adjacent patches share boundary
qubits, creating a network of interlocking code cells. The boundaries between cells introduce interface terms
in the Hamiltonian. These interface terms determine particle masses (Part IV) and enable gauge interactions
(Part V). The dual of the triangular lattice is the honeycomb lattice, which will become relevant for the
emergence of Dirac fermion dynamics.

8 UNIQUENESS

Five requirements constrain the quantum error-correcting code:
1. Error correction. The vacuum must correct arbitrary single-qubit errors, requiring distance 𝑑 ≥ 3.
2. Symmetric error handling. Bit-flip (𝑋) and phase-flip (𝑍) errors must be treated identically. This

requires CSS structure.
3. Self-duality. The 𝑋-stabilizers and 𝑍-stabilizers must have identical algebraic structure, reflecting

electromagnetic duality.
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4. Fault-tolerant gates. Transversal Clifford gates ensure single-qubit errors do not propagate.
5. Minimality. The code should use the fewest physical qubits consistent with the above.

The quantum Hamming bound requires 𝑛 ≥ 5 for a [[𝑛, 1, 3]] code. The five-qubit code [[5, 1, 3]]
saturates this bound but fails requirements 2 and 4: its stabilizers mix 𝑋 and 𝑍 operators, and it lacks a
transversal Hadamard gate. The Shor [[9, 1, 3]] code is CSS but fails requirements 3 and 5: it is not self-dual
and uses 9 qubits rather than 7. The Steane [[7, 1, 3]] code is the unique code satisfying all five requirements.

8.1 LATTICE REQUIREMENTS

Four requirements constrain the geometric substrate:
1. Two-dimensional bulk. Holographic encoding requires a 2D substrate with 1D boundary.
2. Homogeneity. Every vertex is equivalent under lattice symmetries.
3. Isotropy. Maximal rotational symmetry at each vertex. Lorentz invariance requires 𝐶6 symmetry; 𝐶4

produces observable anisotropy.
4. Rigidity. No floppy modes. These would appear as unobserved massless scalars.

The square lattice fails isotropy: its 𝐶4 symmetry breaks rotational invariance at order 𝑘2 in the dispersion
relation. IceCube bounds on Lorentz violation (Δ𝑐/𝑐 < 10−28) rule this out. The hexagonal lattice fails
rigidity: coordination 3 yields𝑂 (𝑁) floppy modes by the Laman theorem. The triangular (𝐴2) lattice satisfies
all requirements: 𝐶6 symmetry, exact rigidity, and optimal throughput (Part II).

8.2 GRAVITATIONAL COEFFICIENTS

The Schwarzschild radius 𝑅𝑠 = 2𝐺𝑀/𝑐2 and Bekenstein-Hawking entropy 𝑆 = 𝐴/(4ℓ2
𝑃
) provide an additional

uniqueness constraint. The Schwarzschild coefficient arises from the protection ratio:

𝑑 − 1
𝑘

=
2
1
= 2. (6)

This is universal for distance-3, 𝑘 = 1 codes. The Bekenstein-Hawking factor arises from the accessible
fraction of degrees of freedom per horizon cell:

𝑑

𝑛 + 𝑑 + 2
=

3
12

=
1
4
. (7)

This requires 𝑛 = 3𝑑−2. Among minimal CSS codes with 𝑑 = 3, only the Steane code satisfies this constraint:

Code (𝑛, 𝑘, 𝑑) Schwarzschild Bekenstein Status

5-qubit (5, 1, 3) 2 0.30 Bekenstein fails
Steane (7, 1, 3) 2 0.25 Both correct
Shor (9, 1, 3) 2 0.21 Bekenstein fails

The Steane code is the unique minimal CSS code that reproduces both gravitational coefficients.

8.3 SUMMARY

Alternative Requirement Failed Failure Mode

5-qubit [[5, 1, 3]] CSS, fault-tolerant, Bekenstein Mixed stabilizers; wrong entropy
Shor [[9, 1, 3]] Self-dual, minimal, Bekenstein Not self-dual; wrong entropy
Square lattice Isotropy 𝐶4 anisotropy; Lorentz violation
Hexagonal lattice Rigidity Floppy modes; massless scalars
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The Steane [[7, 1, 3]] code on the 𝐴2 lattice is the unique structure satisfying all physical requirements and
reproducing the observed gravitational coefficients. From here onward, the microscopic input is fixed. The
substrate fixes coordination and symmetry, and the code fixes (𝑛, 𝑘, 𝑑), stabilizer algebra, and automorphism
group. All subsequent derivations express observables as invariants of this fixed data.
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Part IV: Matter
9 MATTER AS STABILIZER DEFECTS

The vacuum is the state where all stabilizers are satisfied. Matter arises when this condition is violated. A
stabilizer violation is a defect: a localized excitation where code constraints fail. From error correction’s
perspective, a defect is an uncorrected error. From physics’ perspective, it is a particle. The Steane code
has X-type and Z-type stabilizers, treated symmetrically by its self-dual structure. The Fano charge-and-
color constraints fix the assignment of stabilizer sectors to fermion classes. X-type defects (violations of
Z-stabilizers) are leptons, and Z-type defects (violations of X-stabilizers) are quarks. This mapping is fixed
by simultaneous consistency of charge quantization and color: exactly one sector can support an SU(3)
action while admitting the fractional-charge offset enforced by anomaly cancellation. A defect is identified by
which constraints it violates and how those violations sit inside the Fano incidence structure. That incidence
structure is the discrete data of a Steane cell. Electric charge and generation follow by reading that data in a
fixed syndrome frame and then requiring vacuum consistency.

10 CHARGE AND GENERATIONS FROM GEOMETRY

Electric charge is determined by geometric position in the Fano plane. Operating the code requires choosing
a measurement basis: three non-concurrent lines. This choice partitions the 7 points by their incidence
number 𝑁inc, the count of chosen lines containing each point. The incidence structure (3, 3, 1) introduced
in Part III produces a canonical partition: three intersection points (𝑁inc = 2), three midpoints (𝑁inc = 1),
and one center point (𝑁inc = 0). This partition is a geometric invariant. Electric charge derives from the
geometric incidence structure, constrained by vacuum consistency. The incidence count 𝑁inc determines the
charge up to a sector-dependent potential 𝛿:

𝑄 = 𝑁inc − 𝛿. (8)

In the lepton sector (X-stabilizers), the intersection points (𝑁inc = 2) correspond to neutrinos. The physical
requirement that neutrinos be electrically neutral (𝑄𝜈 = 0) fixes the lepton offset:

2 − 𝛿𝐿 = 0 =⇒ 𝛿𝐿 = 2. (9)

This enforces 𝑄 = −1 for the charged leptons at the midpoints (𝑁inc = 1). In the quark sector (Z-stabilizers),
the offset is determined by the absence of gauge anomalies. Consistency typically requires the sum of electric
charges in each generation to vanish. Including the color factor of 3 for quarks:∑︁

gen
𝑄 = 3(𝑄𝑢 +𝑄𝑑) +𝑄𝜈 +𝑄𝑒 = 0. (10)

Substituting the incidence forms yields a unique solution for the quark offset:

3((2 − 𝛿𝑄) + (1 − 𝛿𝑄)) − 1 = 0 =⇒ 9 − 6𝛿𝑄 − 1 = 0 =⇒ 𝛿𝑄 = 4/3. (11)

This derivation yields the fractional charges 𝑄𝑢 = +2/3 and 𝑄𝑑 = −1/3 from the geometry of the code. The
Standard Model has three fermion generations. This repetition is unexplained in the Standard Model; here it
follows directly from the (3, 3, 1) partition. Three intersection points yield three generations of neutrinos
and up-type quarks. Three midpoints yield three generations of charged leptons and down-type quarks. The
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generation quantum number encodes which specific lines contain the point. Generation 1 corresponds to
the intersection 𝐿1 ∩ 𝐿2 (or the midpoint on 𝐿1 only), generation 2 to 𝐿2 ∩ 𝐿3 (or the midpoint on 𝐿2 only),
and generation 3 to 𝐿1 ∩ 𝐿3 (or the midpoint on 𝐿3 only). Generations are distinguished by their geometric
relationship to the measurement basis.

10.1 BASIS INVARIANCE

The charge formulas require choosing three non-concurrent lines as the measurement basis. There are 28
such triples among the 7 Fano lines. Does this choice affect the physics? No. The automorphism group of the
Fano plane, PSL(2, 7), acts transitively on non-concurrent triples. Every triple can be mapped to every other
by a symmetry operation. All 28 bases produce identical physics; the basis choice is gauge freedom. The
particle content is uniquely determined by the Fano geometry itself. Operationally, a syndrome frame is a
gauge-fixing; physical charges and counts are required to be constant on the full PSL(2, 7) orbit of that choice.

11 COLOR CHARGE

Incidence number 𝑁inc determines electric charge. The identity of the lines containing a point determines
color charge. The three basis lines correspond to the three colors of QCD: red, green, blue. The three
line-labels are the unique independent triplet structure supplied by a syndrome frame; the residual symmetry
permutes them as a triplet, matching the representation content needed for color. A quark at a given point
carries the colors of the lines containing it. Intersection points (𝑁inc = 2) lie on two lines and carry two
colors, equivalent to one anti-color. These are the up-type quarks. Midpoints (𝑁inc = 1) lie on one line and
carry a single color. These are the down-type quarks. This structure ensures that baryons (combinations of
three quarks, one from each color line) form color singlets, as required by confinement.

12 ANTIPARTICLES AND THE LOGICAL QUBIT

The Steane code encodes one logical qubit. The logical operators change the encoded information without
disturbing the stabilizers. The logical 𝑋̄ operator exchanges particles with antiparticles:

𝑋̄ : particle ↔ antiparticle (12)

Charge magnitude and generation are preserved; charge sign flips. The CPT theorem is built into the code
structure. Charge conjugation corresponds to the logical 𝑋̄ operation. Parity corresponds to reflection
symmetry of the Fano plane embedding. Time reversal corresponds to reversing the direction of syndrome
flow. Together, these three operations leave the logical qubit unchanged.

13 THE PARTICLE DICTIONARY

Geometry 𝑁inc Leptons (X-sector) Quarks (Z-sector)
𝑄 = 𝑁inc − 2 𝑄 = 𝑁inc − 4/3

Intersection 2 𝜈𝑒, 𝜈𝜇, 𝜈𝜏 (0) 𝑢, 𝑐, 𝑡 (+2/3)
Midpoint 1 𝑒, 𝜇, 𝜏 (−1) 𝑑, 𝑠, 𝑏 (−1/3)
Center 0 Higgs condensate —

Table 1: The particle dictionary. Each row corresponds to an incidence class of the (3, 3, 1) partition. Electric
charge is determined by the formulas 𝑄𝑋 = 𝑁inc − 2 (leptons) and 𝑄𝑍 = 𝑁inc − 4/3 (quarks). The center
point (𝑁inc = 0) hosts the Higgs condensate.
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Part V: Forces
14 FORCES AS STABILIZER FLUCTUATIONS

Particles are stabilizer defects. Forces arise from fluctuations in the stabilizer fields. These excitations
propagate without violating the code. Defects mark where particles are; fluctuations carry interactions
between them.

15 THE GAUGE BOSON SPECTRUM

The Standard Model has 12 gauge bosons. All emerge from stabilizer fluctuations.
Photon. The X-stabilizer sector has a U(1) phase degree of freedom. Fluctuations propagate as waves;

in the continuum limit, the Maxwell field L𝛾 = −1
4𝐹𝜇𝜈𝐹

𝜇𝜈 . One photon, massless, coupling to all charged
particles.

Gluons. The Z-stabilizer sector has three independent phases (one per Fano line), forming an SU(3)
structure with 32 −1 = 8 generators. Fluctuations in these phases are gluons: 8 total, massless, self-interacting
because they carry color charge. Equivalently, the relevant symmetry is the freedom to perform local basis
changes of the Z-sector line-mode triplet (not merely independent phase rotations); imposing preservation of
the triplet norm and orientation yields SU(3), with the gluons the associated connection fluctuations.

Weak bosons. Mixed X-Z fluctuations couple both sectors. The Higgs condensate (the 𝑁inc = 0 center
point) breaks this mixing. Pure fluctuations remain massless (photon, gluons); mixed modes become the
massive𝑊± and 𝑍0.

Origin Bosons Count

X-stabilizer fluctuations Photon 𝛾 1
Z-stabilizer fluctuations Gluons 𝑔 8
Mixed X-Z (broken) 𝑊±, 𝑍0 3

Total 12

Table 2: Gauge bosons as stabilizer fluctuations. The Standard Model gauge structure 𝑆𝑈 (3)𝐶 × 𝑆𝑈 (2)𝐿 ×
𝑈 (1)𝑌 emerges from the X/Z decomposition of the Steane code.

16 THE GAUGE GROUP FROM CODE STRUCTURE

The gauge group 𝑆𝑈 (3)𝐶 × 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 follows from the symmetries of the code sectors.

16.1 STRONG SECTOR: COLOR FROM OCTONIONIC SYMMETRY

The strong sector is controlled by the incidence symmetry of the Fano plane. In a syndrome frame, the
three distinguished basis lines supply a triplet structure, and the residual symmetry permutes this triplet
while preserving incidence. This is the structural source of color. The same symmetry can be written in a
standard algebraic form using a classical identification: the Fano plane encodes the multiplication table of the
imaginary unit octonions. Incidence-preserving permutations act as automorphisms of the octonion algebra.
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The full automorphism group is the exceptional Lie group 𝐺2. Fixing one preferred imaginary unit selects the
stabilizer subgroup

Stab𝐺2 (𝑒𝑖) � 𝑆𝑈 (3) (13)

This is the continuous symmetry associated with the Fano incidence structure in the strong sector.

16.2 WEAK SECTOR: ISOSPIN FROM ERROR CORRECTION

The weak force arises from error-correction machinery. Correcting an error requires: detect syndrome,
identify correction, apply it. The minimal non-Abelian algebra distinguishing the three X-stabilizer families
requires generators satisfying [𝑆𝑖 , 𝑆 𝑗] = 𝑖𝜖𝑖 𝑗𝑘𝑆𝑘 . This is 𝔰𝔲(2). The correction machinery is intrinsically
chiral: it acts only on active, error-prone qubits to project them back to the code space. The gauge symmetry
of the correction sector is SU(2)𝐿 . In the continuum limit, the same three-generator decoding logic acts on
fermionic doublets and lifts to the double cover SU(2) acting on spinors.

16.3 HYPERCHARGE SECTOR: PHASE FREEDOM FROM THE BULK

Surface codes support logical operators as Wilson loops: closed paths that commute with all stabilizers but
are not themselves stabilizers. These loops carry arbitrary phase. In the continuum limit, this phase freedom
becomes U(1) gauge symmetry: hypercharge.

16.4 THE STANDARD MODEL GAUGE GROUP

The three sectors arise from distinct structural features (Fano geometry, error-correction algebra, bulk phases).
The total gauge group is the direct product:

𝐺SM = SU(3)𝐶 × SU(2)𝐿 × U(1)𝑌 (14)

This product structure is fixed because the generators live in commuting sectors: CSS structure makes the
X/Z stabilizer algebras commute, and logical phase commutes with all stabilizers by definition.

16.5 THE MATTER DICTIONARY

Each fermion corresponds to a defect violating specific stabilizer combinations:

Defect Type SM Fermion Charges (𝑆𝑈 (3), 𝑆𝑈 (2),𝑈 (1))
Z-sector + weak doublet Quark doublet 𝑄𝐿 (3, 2,+ 1

6 )
Pure Z-sector Up-type quark 𝑢𝑅 (3, 1,+ 2

3 )
Z-sector + hypercharge Down-type quark 𝑑𝑅 (3, 1,− 1

3 )
X-sector + weak doublet Lepton doublet 𝐿𝐿 (1, 2,− 1

2 )
Pure X-sector Charged lepton 𝑒𝑅 (1, 1,−1)

Table 3: The matter dictionary. Quantum numbers are determined by which stabilizer sectors the defect
violates.

Quarks transform under color because they are Z-sector defects. Leptons are color singlets because
they are X-sector defects. Left-handed particles form doublets (minimal-weight configurations coupling to
error-correction). Right-handed particles are singlets (higher-weight configurations).
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16.6 THE EMERGENT LAGRANGIAN

Given the gauge group and matter content, effective field theory dictates the low-energy Lagrangian:

Leff = −1
4
𝐹𝑎𝜇𝜈𝐹

𝑎𝜇𝜈 +
∑︁
𝜓

𝑖𝜓̄ ̸ 𝐷𝜓 + |𝐷𝜙|2 −𝑉 (𝜙) − 𝑦𝜓̄𝜙𝜓 (15)

Each term has a code interpretation.
• 𝐹𝑎𝜇𝜈𝐹𝑎𝜇𝜈: Elastic stiffness of stabilizer phase fields.
• 𝑖𝜓̄ ̸ 𝐷𝜓: Phase accumulation as defects hop across stabilizer bonds.
• 𝑉 (𝜙): Competition between throughput (favoring strong links) and structural cost.
• 𝑦𝜓̄𝜙𝜓: Scattering of chiral defects off the vacuum condensate.
The Standard Model Lagrangian emerges as the anomaly-free hydrodynamic description of the vacuum code.

17 WEAK FORCE CHIRALITY

The weak force couples only to left-handed fermions. In the code framework, this has a geometric origin.
The key observation is syndrome degeneracy: different error configurations produce the same syndrome.
For a given charge, multiple defect realizations exist with different weights. Left-handed fermions are
minimal-weight configurations (ground states); right-handed fermions are higher-weight (excited states). The
weak interaction is the error-correction machinery projecting back to the code space. It couples only to
ground-state defects; higher-weight configurations relax through ordinary stabilizer dynamics. The weak
force sees only left-handed particles. The (3, 3, 1) partition reinforces this: intersection points are left-handed
doublets, midpoints are right-handed singlets. Doublets are minimal-weight representatives of their syndrome
class.

18 SPIN AND TOPOLOGICAL STATISTICS

Why are electrons fermions while photons are bosons? In the code picture, the answer is algebraic. It follows
from the structure of the Pauli group that defines stabilizer codes.

18.1 PAULI EXCLUSION FROM STABILIZER ALGEBRA

Fermionic defects are Pauli operators (𝑋 or 𝑍 errors) that violate stabilizer constraints. The key identity is:

𝑋2
𝑗 = 𝐼, 𝑍2

𝑗 = 𝐼 . (16)

Two identical defects at the same qubit cancel. Starting from vacuum |𝜓0⟩:

𝑋 𝑗 · 𝑋 𝑗 |𝜓0⟩ = 𝐼 |𝜓0⟩ = |𝜓0⟩. (17)

The system returns to vacuum. Double occupation is algebraically impossible. This is Pauli exclusion, derived
from the Pauli group structure of the vacuum code.

18.2 BOSE-EINSTEIN STACKING FROM PHASE ALGEBRA

Bosonic excitations are phase fluctuations in stabilizer eigenvalues. Phases compose multiplicatively:

𝑒𝑖𝜙1 · 𝑒𝑖𝜙2 = 𝑒𝑖 (𝜙1+𝜙2 ) . (18)

Multiple phase excitations at the same location add constructively. This is Bose-Einstein statistics.



Critical Code Theory 16

18.3 EXCHANGE PHASE FROM SYNDROME OVERLAP

When two fermionic defects at qubits 𝑖 and 𝑗 are exchanged, the resulting phase depends on their syndrome
overlap. Each defect produces a syndrome pattern indicating which stabilizers it violates. The exchange phase
is:

phase = (−1)overlap, (19)

where overlap counts the number of stabilizers violated by both defects. Odd overlap yields −1 (Fermi-Dirac);
even overlap yields +1 (Bose-Einstein). This phase arises from the commutation relations of Pauli operators
along the exchange path.

18.4 CPT SYMMETRY

The CPT theorem is built into the code structure. Charge conjugation 𝐶 corresponds to the logical 𝑋̄ operator,
exchanging 𝑋-type and 𝑍-type defects. Parity 𝑃 corresponds to reflection symmetry of the Fano plane
embedding. Time reversal 𝑇 reverses the direction of syndrome flow. The combination CPT leaves the logical
qubit invariant.

19 THE STRONG CP PROBLEM

The QCD Lagrangian permits a CP-violating term proportional to a vacuum angle 𝜃. Experiment bounds
|𝜃 | < 10−10. The code structure explains why.

19.1 CSS SYMMETRY AND CP

The Steane code is a CSS code: X-stabilizers and Z-stabilizers are constructed from identical classical
Hamming codes. This enforces exact symmetry between the X and Z sectors. In the continuum limit, CP
exchanges these sectors:

CP : ®𝐸 ↔ ®𝐵, 𝑋 ↔ 𝑍 (20)

The vacuum Hamiltonian treats X and Z identically:

𝑆
(𝑖)
𝑋
� 𝑆

(𝑖)
𝑍

∀𝑖 (21)

19.2 THE VANISHING OF 𝜃

The topological charge measures X-Z asymmetry:

𝑄 = 𝑁𝑋 − 𝑁𝑍 (22)

where 𝑁𝑋 and 𝑁𝑍 count X-type and Z-type violations respectively. For a CSS code with identical sector
structure:

⟨𝑁𝑋⟩ = ⟨𝑁𝑍 ⟩ =⇒ ⟨𝑄⟩ = 0 (23)

The 𝜃-term has no physical effect. It can be set to zero by a phase redefinition. The resolution is structural.
The question “Why is 𝜃 so small?” presupposes that 𝜃 is a free parameter. In the code framework, 𝜃 = 0 is
enforced by CSS symmetry. No axion is required. The weak sector violates CP through generation mixing on
the Fano plane (the CKM phase 𝛿 = arccos(𝑑/𝑛)), not through X-Z asymmetry.

19.3 STABILITY OF 𝜃 = 0 UNDER RENORMALIZATION

The strong CP question is not only why 𝜃 vanishes at the microscopic scale, but why it is not regenerated in
the continuum theory.
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CSS conjugation. The Steane code admits an exact global conjugation that exchanges 𝑋 and 𝑍 structure,
implemented by transversal Hadamard:

U ≡ 𝐻⊗𝑛. (24)

Under U, the stabilizer sectors and their fluctuations are exchanged. The vacuum Hamiltonian at the selected
point satisfies this symmetry because the 𝑋 and 𝑍 stabilizer couplings appear on equal footing.

The 𝜃 operator is symmetry-odd. In the continuum, the strong CP term is

𝑆𝜃 = 𝜃

∫
𝑑4𝑥

1
32𝜋2 𝐺𝜇𝜈𝐺̃

𝜇𝜈 . (25)

In the code picture, the strong gauge field arises from the sector whose fluctuations generate color dynamics.
CSS conjugation exchanges this sector with its dual. Under this exchange, the topological density changes
sign:

U : 𝐺𝜇𝜈𝐺̃𝜇𝜈 → −𝐺𝜇𝜈𝐺̃𝜇𝜈 . (26)

Therefore the 𝜃 term is forbidden by the exact microscopic symmetry unless 𝜃 takes a symmetry-fixed value.

Renormalization cannot generate a forbidden operator. Renormalization group flow can dress couplings
and generate effective operators, but it cannot generate an operator that is excluded by an exact symmetry
of the ultraviolet dynamics. Since U is exact at the scale where the vacuum Hamiltonian is selected, the
effective action remains U-even at all scales in the domain of validity of the continuum limit. In this sense
𝜃 = 0 is protected structurally.

Separation from weak CP violation. Weak CP violation arises from generation structure and mixing on the
Fano geometry. It does not require an 𝑋–𝑍 asymmetry of the vacuum sectors, so it can coexist with strong
CP protection.
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Part VI: Continuum Emergence
20 THE EMERGENCE OF CONTINUOUS SYMMETRY

Modern physics is built on continuous symmetries. If the universe is fundamentally a discrete code on the
𝐴2 lattice, how does the world look round? The answer is statistical averaging. Just as a rapidly spinning
triangle appears as a blur to a slow camera, the continuum symmetries of physics are the holographic blur
of discrete lattice paths visited at the Planck frequency. This Part establishes that the discrete 𝐴2 structure
produces continuous physics through three mechanisms: random walk averaging, wave dispersion isotropy,
and universality class arguments.

20.1 THE EMERGENCE OF 𝜋

The 𝐴2 lattice is anisotropic. Each site has 6 neighbors at discrete angles. Yet macroscopic physics is isotropic.
The resolution lies in timescales. Consider a random walker on the 𝐴2 lattice. At each step, the walker moves
to one of 6 neighbors with equal probability. At short times (fewer than 10 steps), the probability distribution
is hexagonal and the lattice structure is visible. At long times (more than 100 steps), the distribution converges
to a perfect Gaussian:

𝑃(𝑟, 𝑡) = 𝑟

2𝜋𝐷𝑡
exp

(
− 𝑟2

4𝐷𝑡

)
(27)

where 𝐷eff ≈ 0.25 in lattice units. The anisotropy (deviation from circular symmetry) decays as a power
law. After 1000 steps, the distribution is indistinguishable from a continuum Gaussian. The same 𝜋 that
normalizes long-walk statistics also controls coarse-graining depth: each recovery-defined cycle integrates
over lattice phase and contributes a universal 𝜋−1 factor per depth step.

20.2 THE EMERGENCE OF LORENTZ INVARIANCE

The random walk demonstrates spatial isotropy. A more fundamental question is the origin of relativistic
spacetime: the Lorentzian signature and the invariant speed of light. The discrete wave equation on the 𝐴2
lattice is ¥𝜙𝑖 = −∑

𝑗∈nn(𝑖) (𝜙𝑖 − 𝜙 𝑗), where the sum runs over nearest neighbors. In momentum space, this
yields a dispersion relation 𝜔(k). Expanding for small momenta (the low-energy limit):

𝜔2(k) ≈ 3
8
|k|2 (28)

Crucially, the angular dependence vanishes. The hexagonal anisotropy of the lattice cancels at leading order.
The dispersion surface forms a perfect circular cone with 𝜔 = 𝑐 |k| where 𝑐 =

√︁
3/8 ≈ 0.612 in lattice units.

This defines an effective speed of light. Any observer built from low-energy excitations on the lattice perceives
a spacetime governed by 𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2. The jagged directions of the triangular grid are invisible
to wave mechanics. The universe looks Lorentzian because the 𝐶6 symmetry of the lattice is high enough to
enforce isotropy for quadratic operators. Relativity is the hydrodynamic limit of the 𝐴2 code.

21 EMERGENT DIRAC DYNAMICS

The Standard Model fermions obey the Dirac equation:

(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓 = 0. (29)

This section derives the Dirac equation from defect transport on the vacuum lattice.
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21.1 THE HONEYCOMB HOPPING PROBLEM

Point defects in the Steane tessellation live on plaquettes of the 𝐴2 lattice. Plaquette adjacency forms the
honeycomb lattice, a bipartite graph with sublattices A and B. The tight-binding Hamiltonian for a defect
hopping between adjacent plaquettes is:

𝐻hop = −𝑡
∑︁
⟨𝑖, 𝑗 ⟩

(𝑐†
𝑖
𝑐 𝑗 + h.c.) (30)

where 𝑡 is the hopping amplitude set by stabilizer fluctuations.

21.2 DIRAC CONES AND BOUNDARY SPINORS

Diagonalization in momentum space gives:

𝐸 (k) = ±𝑡 | 𝑓 (k) |, 𝑓 (k) = 1 + 𝑒𝑖k·a1 + 𝑒𝑖k·a2 . (31)

The function 𝑓 (k) vanishes at two inequivalent points in the Brillouin zone, 𝐾 and 𝐾 ′. Near each point the
spectrum is linear:

𝐸 (q) ≈ ±𝑣𝐹 |q|, (32)

with q = k − K and 𝑣𝐹 determined by (𝑡, 𝑎). The bipartite A/B structure produces a 2-component spinor on
each Dirac cone. The low-energy boundary field content is therefore two 2-component spinors, 𝜓𝐾 and 𝜓𝐾 ′ .

21.3 DEPTH COORDINATE FROM RECOVERY DYNAMICS

Let D denote the local recovery channel of the vacuum code, defined by syndrome extraction followed by the
minimal recovery update. The depth coordinate 𝑧 is the iteration index of D under coarse-graining. Layer
𝑧 = 0 is the physical 𝐴2 boundary. Layer 𝑧 = 1 is the first coarse-grained description produced by applying D
to the boundary degrees of freedom. In general, layer 𝑧 is defined by D𝑧 . Depth is operational: it is measured
by reconstruction radius. Reconstruction radius 𝑅(𝑧) is the minimal boundary region required to recover a
local bulk operator at depth 𝑧 under the recovery channel. The defining prediction is monotonicity:

𝑅(𝑧 + 1) > 𝑅(𝑧). (33)

This depth-as-scale structure matches the tensor-network holography paradigm, in which renormalization
depth is interpreted as a bulk coordinate.

21.4 HIERARCHICAL STEANE LAYERS

Depth is the iteration count of recovery. This definition can be upgraded to an explicit hierarchical construction.

Definition (Layering by recovery). Let L0 denote the physical degrees of freedom on the 𝐴2 substrate. Let
D be the local recovery channel defined by syndrome extraction and minimal recovery update on Steane cells.
Define the next layer L𝑧+1 as the effective degrees of freedom obtained by applying D to L𝑧 and retaining the
protected logical content. Iterating this procedure produces a nested family of descriptions {L𝑧} indexed by 𝑧.

Rate and coarse-graining. Each Steane cell encodes one logical qubit into 𝑛 = 7 physical qubits. Under a
recovery-defined coarse-graining step, the effective density of degrees of freedom is reduced by a factor set by
the code rate. After 𝑧 layers, the effective density scales as 7−𝑧 relative to the boundary layer.
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Reconstruction radius scaling. Let O(𝑧) be an operator localized at depth 𝑧 in the recovery hierarchy. To
reconstruct O(1) from the boundary, one must access a boundary region large enough to specify the logical
state of at least one Steane cell. The distance 𝑑 = 3 fixes the minimum: fewer than 𝑑 qubits do not suffice
to resolve the logical information under adversarial local noise. For depth 𝑧 > 1, reconstruction requires
resolving the logical inputs feeding the next layer. Because each step bundles 7 lower-layer logical degrees
into one higher-layer logical degree, the minimal boundary support required grows by a factor of 7 per step.
This yields the scaling

|𝑅(𝑧) | ≳ 𝑑 7𝑧−1, (34)
up to geometry-dependent constants set by the embedding and by how boundary regions intersect the relevant
recovery light cone. This exponential growth of reconstruction support with 𝑧 is the operational meaning of a
bulk direction: deeper operators require larger boundary regions to recover.

21.5 THE EMERGENT DIRAC OPERATOR

Expanding near 𝐾 , the effective low-energy Hamiltonian is:

𝐻eff = 𝑣𝐹 (𝜎𝑥 𝑝𝑥 + 𝜎𝑦 𝑝𝑦), (35)

and the corresponding continuum Lagrangian is:

LDirac = 𝜓̄(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓, (36)

with 𝛾0 = 𝜎𝑧 , 𝛾1 = 𝑖𝜎𝑦 , 𝛾2 = −𝑖𝜎𝑥 . The mass 𝑚 arises from chiral localization (Part VIII). The 3+1D
description is obtained by introducing a depth coordinate 𝑧. The coordinate 𝑧 is the layer index of repeated
coarse-graining under the stabilizer recovery circuit. A decoding map is the local recovery channel that takes
stabilizer syndrome data and maps physical degrees of freedom to an effective description at the next scale.
Composing this map defines a sequence of layers labeled by 𝑧. The two Dirac cones supply the boundary
spinors. Depth dynamics couples the 𝐾 and 𝐾 ′ sectors across adjacent layers. In the long-wavelength limit,
the layer difference becomes a derivative:

𝜓(𝑧 + 1) − 𝜓(𝑧) → 𝑎𝑧𝜕𝑧𝜓, (37)

with 𝑎𝑧 the depth step in lattice units. Define the 4-component field Ψ = (𝜓𝐾 , 𝜓𝐾 ′)𝑇 . The effective continuum
operator takes the form:

(𝑖𝛾0𝜕𝑡 + 𝑖𝛾1𝜕𝑥 + 𝑖𝛾2𝜕𝑦 + 𝑖𝛾3𝜕𝑧)Ψ = 0, (38)
with 𝛾3 acting on the (𝐾, 𝐾 ′) sector index. Depth 𝑧 is measured operationally by reconstruction radius.
Reconstruction radius is the minimal boundary region required to recover a local bulk operator at a given
depth under the decoding map.

22 THE MULTI-CELL HAMILTONIAN

The preceding sections describe dynamics on a single Steane cell or on the abstract honeycomb dual. The
vacuum is a tessellation of many cells sharing qubits. This section constructs the explicit Hamiltonian
governing the full system.

22.1 TESSELLATION GEOMETRY

A Steane cell centered at position r occupies a 7-site star: the central site plus its six neighbors:

𝑉 (r) = {r} ∪ {r + e𝑖 : 𝑖 = 1, . . . , 6}. (39)

Cells are placed at every lattice site. Each qubit participates in exactly 7 cells: once as the center of the cell at
its own position, and six times as a peripheral qubit for the cells centered at each of its neighbors.
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22.2 CELL OVERLAP STRUCTURE

The overlap between adjacent cells determines the coupling strength:

Cell Separation Shared Qubits Configuration

1 (nearest neighbor) 2 Each center is peripheral of the other√
3 (second neighbor) 2 Two common peripherals

2 (third neighbor) 1 One common peripheral

Nearest-neighbor cells have maximal overlap. If cell 𝛼 is centered at r and cell 𝛽 is centered at r + e1, then
𝑉 (r) ∩𝑉 (r + e1) = {r, r + e1}: the center of each cell is a peripheral qubit of its neighbor.

22.3 THE HAMILTONIAN

Let P denote the set of all cells (one per lattice site). For each cell 𝑝 ∈ P, define the six stabilizer generators
𝑆
(𝑎,𝑝)
𝑋

and 𝑆 (𝑎,𝑝)
𝑍

for 𝑎 = 1, 2, 3 according to the Fano plane incidence structure.
The multi-cell Hamiltonian is:

𝐻 = −𝐽
∑︁
𝑝∈P

3∑︁
𝑎=1

[
𝑆
(𝑎,𝑝)
𝑋

+ 𝑆 (𝑎,𝑝)
𝑍

]
(40)

This is the sum of stabilizer terms over all cells. The inter-cell dynamics requires no additional terms: it
emerges from the overlap of stabilizer supports.

22.4 EMERGENT INTER-CELL DYNAMICS

The coupling between cells arises from qubit sharing. For Pauli operators 𝑃 and𝑄, the commutator [𝑃,𝑄] = 0
if and only if their supports overlap on an even number of qubits. Stabilizers from adjacent cells share
qubits, and for generic stabilizer pairs across adjacent cells, the overlap within stabilizer supports is odd. The
stabilizers do not commute. This non-commutativity generates dynamics. Under 𝐻, a stabilizer violation
(defect) in cell 𝑝 couples to stabilizers in adjacent cells through the shared qubits. An 𝑋 error on a shared
qubit flips 𝑍-stabilizers in both cells simultaneously. The defect propagates. The effective hopping amplitude
between adjacent cells is 𝑡hop = 𝐽 · |⟨defect in 𝑝′ |𝐻 |defect in 𝑝⟩|, nonzero because stabilizers from 𝑝 and 𝑝′
share qubits. Cell centers form the 𝐴2 lattice; plaquette adjacency forms the dual structure. Defects hopping
between adjacent cells trace paths on this dual graph, which locally resembles the honeycomb lattice. This
produces the Dirac dynamics described above.

22.5 THE INCIDENCE GRAPH

For a single cell, the incidence graph is the Heawood graph: 7 qubit vertices (Fano points), 7 stabilizer vertices
(Fano lines, of which 6 are independent), and 21 edges connecting qubits to the stabilizers they participate in.
For the tessellation, the incidence graph is constructed by gluing Heawood graphs at shared qubit vertices.
Qubit vertices are shared across 7 cells; stabilizer vertices are not shared.

22.6 SPECTRAL STRUCTURE

The heat kernel on the incidence graph is:
𝐾 (𝑡) = 𝑒−𝑡𝐿 , (41)

where 𝐿 is the graph Laplacian. At the critical timescale 𝑡∗ = 1/𝑛 = 1/7, the heat kernel encodes propagation
amplitudes between positions on the graph. For a single cell, the Heawood graph Laplacian has eigenvalues
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𝜇 = 0 (multiplicity 1), 𝜇 = 6 (multiplicity 1), 𝜇 = 3 −
√

2 (multiplicity 6), and 𝜇 = 3 +
√

2 (multiplicity 6).
The ±

√
2 eigenvalues are Ramanujan: the Heawood graph is a Ramanujan graph, achieving optimal spectral

expansion for its degree. The eigenvector structure encodes positions on the Fano plane. The normalized
matrix element from position 𝑞 to the cell center 𝑞0 is:

C(𝑞) =
𝐾 (𝑡∗)𝑞,𝑞0

𝐾 (𝑡∗)𝑞0,𝑞0

. (42)

This quantity depends only on the graph geometry. Different positions on the Fano plane yield different values
of C, determined by the eigenvector overlaps at those positions.

23 EMERGENT MAXWELL DYNAMICS

The Standard Model photon obeys the Maxwell equations:

𝜕𝜇𝐹
𝜇𝜈 = 𝐽𝜈 , 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 . (43)

This section derives Maxwell electrodynamics from stabilizer phase fluctuations.

23.1 THE PHASE FIELD

The X-stabilizers of the Steane code have a phase degree of freedom. At each lattice site 𝑖, define 𝜙𝑖 as the
phase of the local X-stabilizer coupling. Spatial variations in 𝜙 represent gauge field configurations. The
elastic energy of the phase field is:

𝐸 [𝜙] =
𝜅𝜙

2

∑︁
⟨𝑖, 𝑗 ⟩

(𝜙𝑖 − 𝜙 𝑗)2 (44)

where 𝜅𝜙 is the phase stiffness (determined by 𝐽stab) and the sum runs over nearest neighbors.

23.2 THE DISCRETE WAVE EQUATION

Adding kinetic energy ¤𝜙2
𝑖
/2, the equation of motion is:

¥𝜙𝑖 = −𝜅𝜙
∑︁
𝑗∈nn(𝑖)

(𝜙𝑖 − 𝜙 𝑗). (45)

This is the discrete wave equation. In Fourier space:

𝜔2(k) = 𝜅𝜙
6∑︁
𝑗=1

(1 − cos
(
k · r 𝑗

)
) (46)

where r 𝑗 are the 6 nearest-neighbor vectors.

23.3 ISOTROPY AND THE SPEED OF LIGHT

Expanding for small |k|:

𝜔2(k) ≈
3𝜅𝜙𝑎2

4
|k|2 ≡ 𝑐2 |k|2. (47)

The dispersion is isotropic at leading order. The 6-fold symmetry of the 𝐴2 lattice forces the angular
dependence to cancel. The first anisotropic correction appears at order |k|4:

𝜔2(k) = 𝑐2 |k|2
(
1 + O(𝑎2𝑘2)

)
. (48)

The emergent speed of light is 𝑐 =
√︁

3𝜅𝜙/4 · 𝑎 in lattice units.
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23.4 THE CONTINUUM LIMIT

Taking the limit 𝑎 → 0 with 𝑐 fixed, the phase field satisfies:

𝜕2
𝑡 𝜙 − 𝑐2∇2𝜙 = 0. (49)

Identifying 𝐴𝜇 = (𝜙,−𝑐∇𝜙) and constructing the field strength 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇, the dynamics are
governed by:

LMaxwell = −1
4
𝐹𝜇𝜈𝐹

𝜇𝜈 . (50)

The Maxwell equations emerge from the stiffness of the stabilizer phase field. The photon is the Goldstone
mode of the U(1) phase symmetry.

24 LORENTZ VIOLATION BOUNDS

The discrete lattice breaks exact Lorentz invariance. Residual anisotropy and dispersion modifications are
suppressed by powers of 𝑎/ℓ, where 𝑎 is the lattice spacing (the Planck length) and ℓ is the wavelength of
interest.

24.1 ANISOTROPY

The dispersion relation at finite 𝑘 has angular dependence:

𝜔(k) = 𝑐 |k|
(
1 + 𝜂 cos(6𝜃𝑘) (𝑎𝑘)2 + . . .

)
(51)

where 𝜃𝑘 is the angle of k relative to a lattice axis and 𝜂 is a numerical coefficient of order unity. For a photon
with wavelength ℓ, the fractional anisotropy is:

Δ𝑐

𝑐
∼

(𝑎
ℓ

)2
. (52)

At optical wavelengths (ℓ ∼ 10−6 m) and Planck-scale lattice spacing (𝑎 ∼ 10−35 m):

Δ𝑐

𝑐
∼ 10−58. (53)

This is far below any observational threshold.

24.2 GAMMA-RAY BURST CONSTRAINTS

The strongest constraints on vacuum dispersion come from gamma-ray bursts. Observations of GRB 090510
by Fermi-LAT bound Lorentz violation at the Planck scale:

Δ𝑐

𝑐
< 10−20 at 𝐸 ∼ 30 GeV. (54)

At 30 GeV (ℓ ∼ 10−17 m), the 𝐴2 lattice predicts:

Δ𝑐

𝑐
∼

(
10−35

10−17

)2

= 10−36. (55)

This is 16 orders of magnitude below the observational bound. The theory is consistent with all known Lorentz
invariance tests. The 𝐴2 lattice produces a continuum spacetime indistinguishable from Lorentz-invariant
Minkowski space at all experimentally accessible scales; deviations are predicted only at the Planck scale.
These bounds test the precision regime of the continuum limit.
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25 INFORMATION DISTANCE AND THE EUCLIDEAN METRIC

A complementary test of smoothness comes from correlation functions. On a finite 𝐴2 patch, define a massive
scalar field with Laplacian 𝐿 and mass 𝑚, giving the Green’s function 𝐺 = (𝐿 + 𝑚2I)−1. Using a central site
as reference, define an information distance to a site at graph distance 𝑟:

𝑑info(𝑟) = − log |𝐺 (0, 𝑟) | (56)

For a massive probe, the Green’s function has Yukawa behavior𝐺 (𝑟) ∼ 𝑒−𝑚𝑟 , so 𝑑info(𝑟) ∝ 𝑟 . The information
distance tracks Euclidean distance with an isotropy ratio of approximately 0.97, compared to 0.74 for naive
graph distance (Manhattan-like). The effective metric perceived by fields on the code is Euclidean. The
jaggedness of the graph is invisible to physics.

26 UNIVERSALITY CLASS

The ultimate claim is that the 𝐴2 Steane vacuum belongs to the same universality class as the Standard Model
coupled to gravity. Universality means that different microscopic theories can have identical long-wavelength
behavior, determined only by symmetries and dimensionality. For the 𝐴2 code, the relevant features are: (1)
the lattice has 𝐶6 point symmetry, which is sufficient to generate full rotational invariance in the continuum
limit; (2) defects on the dual honeycomb have Dirac-cone dispersion, yielding relativistic fermions; (3)
stabilizer phase fluctuations obey discrete Maxwell equations, yielding gauge fields; (4) the X/Z stabilizer
decomposition produces𝑈 (1) × 𝑆𝑈 (3) plus broken 𝑆𝑈 (2). These symmetries protect the relevant low-energy
operators. Higher-derivative corrections are suppressed by powers of 𝑎/ℓ where 𝑎 is the lattice spacing and
ℓ is the wavelength of interest. Lattice artifacts vanish in the continuum limit: anisotropy appears only at
𝑂 (𝑘4𝑎2), discreteness is invisible below the Planck scale, and Lorentz violation is bounded by Δ𝑐/𝑐 < 10−28,
consistent with constraints from gamma-ray burst observations. The Standard Model Lagrangian is the unique
renormalizable, gauge-invariant theory consistent with the symmetries of the 𝐴2 vacuum, and is thus the
inevitable low-energy limit of the code.

27 ATOMIC STRUCTURE FROM EMERGENT QED

The universality claim can be tested at atomic scales. The emergent Maxwell and Dirac dynamics determine
hydrogen energy levels, and the corrections to fine structure arise from the same vacuum polarization
mechanism that generates 𝛼.

27.1 THE LAMB SHIFT

The 2𝑆1/2 − 2𝑃1/2 splitting in hydrogen arises from vacuum polarization and self-energy. The dominant
contribution scales as 𝛼5𝑚𝑒. The factor (𝑛 − 𝑑)/(𝑛 + 𝑑) = 4/10 measures the ratio of excess qubits to total
geometric reach. This ratio controls the strength of vacuum fluctuation effects in the atomic bound state:

Δ𝐸Lamb = 𝛼5𝑚𝑒𝑐
2 × 𝑛 − 𝑑

𝑛 + 𝑑 = 𝛼5𝑚𝑒𝑐
2 × 4

10
. (57)

The predicted value is 1060 MHz. The experimental value is 1057.845(9) MHz, an error of 0.2%.

27.2 FINE STRUCTURE

The 2𝑃3/2 − 2𝑃1/2 splitting involves the automorphism group. The fine structure splitting is suppressed by the
full automorphism group order. This reflects the fact that spin-orbit coupling averages over all 168 equivalent
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configurations of the vacuum cell:

Δ𝐸FS =
𝛼4𝑚𝑒𝑐

2

|PSL(2, 7) | =
𝛼4𝑚𝑒𝑐

2

168
. (58)

The predicted value is 10.7 GHz. The experimental value is 10.969 GHz, an error of 2.4%.

27.3 THE 21 CM LINE

The ground state hyperfine splitting:

Δ𝐸HFS =

(
𝑛 + 𝑘

𝑑

)
𝛼4 𝑚

2
𝑒

𝑚𝑝
=

22
3
𝛼4 𝑚

2
𝑒

𝑚𝑝
. (59)

The factor 𝑛 + 𝑘/𝑑 = 7 + 1/3 = 22/3 = 7.33 approximates (4/3)𝑔𝑝 = 7.45 where 𝑔𝑝 = 5.586 is the proton
g-factor. The hyperfine splitting is the signature of the 21 cm line used in radio astronomy. The code structure
determines its magnitude through the combination 𝑛+ 𝑘/𝑑, mixing the qubit count with the logical-to-distance
ratio.
The predicted value is 1395 MHz. The experimental value is 1420.405 751 768(1) MHz, an error of 1.8%.
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Part VII: Coupling Constants
The Standard Model contains 19 free parameters. Among the most fundamental are the coupling constants:
the fine-structure constant 𝛼 ≈ 1/137 governing electromagnetism, the Weinberg angle sin2 𝜃𝑊 ≈ 0.23
governing electroweak mixing, and the strong coupling 𝛼𝑠 governing QCD. We interpret them as the channel
capacities of the vacuum code: they measure how much information can flow through different sectors of the
Steane-Fano structure. If this identification is correct, 𝛼−1 equals the information capacity of the minimal
vacuum cell.

A coupling is read from what a probe resolves of a single vacuum cell. The code supplies a finite set of
distinguishable channels. The inverse coupling is the effective count of those channels for the relevant sector.
The expressions below are evaluations of that count using only Steane parameters and Fano symmetry.

28 THE FINE-STRUCTURE CONSTANT

The Steane code has parameters [[𝑛, 𝑘, 𝑑]] = [[7, 1, 3]]: 7 physical qubits encoding 1 logical qubit with
distance 3. We claim that the fine-structure constant is the inverse of the vacuum’s electromagnetic channel
capacity:

𝛼−1 = 2𝑛 + 𝑑2 = 128 + 9 = 137. (60)

This is the cell’s total resolvable channel count: Hilbert multiplicity 2𝑛 plus the syndrome-frame-activated
geometric screening multiplicity 𝑑2. This section derives why these two quantities, which appear to have
different origins, sum to yield a single physical constant.

28.1 THE COUNTING ARGUMENT

Both 128 and 9 are dimensionless integers. They count distinguishable information channels available to
a photon probing the vacuum at the scale of a single Steane cell. The first term, 2𝑛 = 27 = 128, counts
quantum channels. A photon interacting with a Steane cell can, in principle, distinguish between any of
the 27 orthogonal states of the 7 physical qubits. This is the Hilbert space dimension of the code block. In
the language of quantum information, it is the number of classical bits that the cell could communicate to
a receiver if measured in a complete basis. The second term, 𝑑2 = 32 = 9, counts geometric screening
channels. In one syndrome measurement frame, the electromagnetic sector resolves three independent
stabilizer checks. Each check involves three Fano points. The total count of point–check incidences is
therefore 3 × 3 = 9. This is the number of geometric screening channels available to a photon interacting
with a single vacuum cell. The sum 2𝑛 + 𝑑2 is the total number of distinguishable channels, quantum plus
classical, that a photon can access when probing the vacuum. The fine-structure constant 𝛼 = 1/137 measures
the fraction of this total capacity used by a single electromagnetic interaction. The additivity is the same
structural additivity as 𝜀 = 𝜀0 + 𝜒: one contribution counts available microscopic states, the other counts
independent screening responses selected by incidence constraints.

The same count can be recovered from the dressed response of the cell. One part comes from the size of
the local configuration space. One part comes from the incidence-restricted screening sector activated by a
syndrome frame. The next subsection writes this in the standard polarization language.

28.2 THE LATTICE GAUGE THEORY DERIVATION

The counting argument identifies the numerical result. A field-theoretic derivation justifies why these
capacities sum rather than multiply. Consider the vacuum cell as a lattice gauge field theory. The photon
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field 𝐴𝜇 couples to charged defects (electrons) through the minimal coupling 𝐷𝜇 = 𝜕𝜇 − 𝑖𝑒𝐴𝜇. The inverse
coupling 𝛼−1 is the dressed value after vacuum polarization. The bare coupling emerges from spectral
geometry. In the spectral action program, the coupling constant emerges from the operator spectrum. For the
Steane code, the leading Seeley-DeWitt coefficient 𝑎0 = Tr(1) counts the ultraviolet degrees of freedom:

𝛼−1
0 = 𝑎0 = dim(Hphys) = 2𝑛 = 128. (61)

The screening contribution 𝜒 arises from virtual defect-antidefect pairs. The one-loop vacuum polarization
Π𝜇𝜈 on the Steane lattice sums over propagator paths constrained by the Fano plane’s incidence structure. The
calculation yields Tr(Π) = 9, corresponding to the 9 geometric channels available for defect propagation in a
syndrome measurement frame (3 stabilizer modes × 3 points per line). The Fano plane geometry enforces
this screening count by restricting allowed defect–photon couplings to incidence lines. The dressed inverse
coupling is the sum of bare and screening contributions, following the standard dielectric relation 𝜀 = 𝜀0 + 𝜒:

𝛼−1 = 𝛼−1
0 + 𝜒 = 128 + 9 = 137. (62)

This derivation bridges the gap between combinatorial capacity and field-theoretic renormalization. The
bare coupling 128 is the Hilbert space dimension of the code block, while the screening 9 is the geometric
susceptibility fixed by the syndrome-frame incidence constraints.

28.3 GAUGE INVARIANCE OF THE SCREENING COUNT

The automorphism group PSL(2, 7) acts transitively on the set of non-concurrent triples. Every frame can be
mapped to every other frame by a symmetry operation. The incidence count 3 + 3 + 3 = 9 is invariant under
all such mappings. The frame choice is gauge freedom; the screening contribution is physical. Equivalently,
the choice of non-concurrent triple is a change of syndrome frame, and PSL(2, 7) maps any such frame to any
other while preserving the incidence count 3 + 3 + 3 = 9.

28.4 THE CORRECTION TERMS

The base formula 𝛼−1 = 2𝑛 + 𝑑2 = 137 counts the total channel capacity of a single vacuum cell at infinite
dilution: a photon interacting with one isolated Steane block. The physical vacuum is a tessellation of cells,
and each cell is entangled with its neighbors through shared boundary qubits. The correction terms arise from
inter-cell coherence. A photon’s screening cloud extends beyond the cell it probes and samples the collective
phase structure of the tessellation. The measured value is 𝛼−1 = 137.035999177(21). The correction of
approximately 0.036 must be derived from the same structural parameters that gave the base value. To
calculate the correction, we need two things: the scale at which electromagnetic interactions operate, and the
count of vacuum modes participating in screening at that scale.

28.5 THE CRITICAL SCALE

The heat kernel 𝐾 (𝑡) = Tr(𝑒−𝑡𝐷2) of the vacuum Dirac operator counts effective degrees of freedom at
scale 𝑡. At small 𝑡 (ultraviolet), all 256 modes of the Steane Hilbert space contribute. At large 𝑡 (infrared),
only zero modes survive. The vacuum processes information most efficiently at the scale where entropy
throughput J (𝑡) = −𝑑𝑆/𝑑𝑡 peaks. This occurs at 𝑡 = 1/𝑛 = 1/7, where 𝐾 = 228 = 256 − 28, reduced by
exactly the number of PSL(2, 7) cosets. At this scale the vacuum is maximally active. The electromagnetic
sector does not operate at peak throughput. It operates at the balance point between coherent and decoherent
dynamics. Below this scale, the vacuum maintains perfect code structure but cannot couple to matter. Above
it, the vacuum permits interactions but loses quantized charge structure. The balance occurs at 𝑡 = 𝜋/2, the
quarter-period of the fundamental oscillation. At this scale:

𝐾 (𝜋/2) = 137.42 (63)
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The throughput efficiency at 𝑡 = 𝜋/2 is 48.3%, approximately half the maximum. This identifies the
electromagnetic operating point as the coherence-decoherence boundary predicted by the throughput
principle.

28.6 COUNTING THE SCREENING MODES

When a photon couples to the vacuum, it excites virtual defect-antidefect pairs. These form a screening cloud.
Only modes that transform nontrivially under electromagnetic U(1) participate. Fix a syndrome measurement
frame: three non-concurrent Fano lines defining the X-stabilizer checks. The active screening sector consists
of modes satisfying two conditions: (1) they couple to at least one of the three X-stabilizers, and (2) they
transform under orientation-preserving elements of PSL(2, 7). The automorphism group PSL(2, 7) has 168
elements. Electromagnetic interactions are parity-even, so a photon cannot distinguish a vacuum configuration
from its mirror image. Transformations that reverse orientation contribute with opposite phase and cancel.
Only the 84 orientation-preserving elements contribute:

𝑁frame =
|PSL(2, 7) |

2
= 84. (64)

Within the syndrome frame, the photon also resolves three independent X-stabilizer modes, one for each basis
line. These are distinguished by the frame choice itself and add to the count:

𝑁scr = 𝑁frame + 𝑁stab = 84 + 3 = 87. (65)

This is the total number of vacuum modes participating in electromagnetic screening.

28.7 THE PERTURBATIVE EXPANSION

The correction admits a perturbative expansion in powers of 𝜋/𝑁scr. The leading term arises from single
screening events. Higher orders arise from nested screening: screening of screening, where virtual pairs in
the cloud themselves polarize the vacuum.

First order. A photon excites a virtual pair that propagates through the screening sector and annihilates. The
amplitude involves phase integration over all screening modes:

𝛿1 =
𝜋

𝑁scr
=
𝜋

87
≈ 0.0361 (66)

The factor 𝜋 arises from integrating the phase accumulated by the virtual pair over one screening cycle.

Second order. The virtual pair itself excites secondary pairs. These nested processes introduce a suppression
factor. The 84 orientation-preserving automorphisms include two trivial elements: the identity (which does
nothing) and the central involution (which acts trivially on physical observables). These do not contribute to
real screening. The effective count for higher-order processes is:

𝑁eff = 84 − 2 = 82 (67)

Each second-order process samples 𝑛 = 7 qubits (the fundamental cell size) while being screened by 𝑁eff
modes. The second-order correction is:

𝛿2 = − 𝑛

𝑁eff
· 𝛿2

1 = − 7
82

( 𝜋
87

)2
≈ −0.000111 (68)

The minus sign indicates that higher-order screening reduces the net correction. The factor 𝑛/𝑁eff measures
how much screening capacity each qubit consumes.
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Third order. The pattern continues. Each order introduces another factor of 𝜋/𝑁scr, with coefficients
determined by the PSL(2, 7) structure. The third-order term involves the full automorphism group:

𝛿3 =
1

|PSL(2, 7) | · 𝛿
3
1 =

1
168

( 𝜋
87

)3
≈ 2.8 × 10−7 (69)

The series. Combining terms:

𝛼−1 = 137 + 𝜋

87
− 7

82

( 𝜋
87

)2
+ 1

168

( 𝜋
87

)3
− · · · (70)

28.8 THE CLOSED FORM

The perturbative series resums into a compact exponential. The key observation is that higher-order terms
follow a geometric pattern. Each order is suppressed by the ratio of cell size to screening capacity. Define the
suppression parameter:

𝜖 =
𝑛 · 𝜋

𝑁scr · 𝑁eff
=

7𝜋
87 × 82

≈ 0.00308 (71)

This parameter measures the “cost” of each screening event in terms of cell capacity. When 𝜖 is small, the
series

𝜋

𝑁scr

(
1 − 𝜖 + 𝜖2

2
− · · ·

)
(72)

resums to:
𝜋

𝑁scr
· 𝑒−𝜖 (73)

The closed form for the fine-structure constant is:

𝛼−1 = 137 + 𝜋

87
· exp

(
− 7𝜋

87 × 82

)
= 137.0359991 (74)

This matches experiment to 5 × 10−8.

Physical interpretation of the exponential. The exponential factor represents the probability that a screening
process remains fully coherent across all orders. Each screening event has a small probability 𝜖 of “failing”
by involving a trivial automorphism. The probability of success through all orders is 𝑒−𝜖 . The exponential
suppression is the cumulative cost of maintaining coherent screening in a finite-capacity code.

28.9 INDEPENDENT VERIFICATION FROM SPECTRAL METHODS

The group-theoretic derivation partitioned 𝑁scr as 84+3 (orientation-preserving automorphisms plus stabilizer
modes). A completely independent approach using the vacuum’s spectral structure yields the same count with
a different partition. The Dirac operator 𝐷 =

∑
𝑖 𝑆

(𝑖)
𝑋

⊗ 𝛾1 +
∑
𝑖 𝑆

(𝑖)
𝑍

⊗ 𝛾2 acts on the 256-dimensional space
H128 ⊗ C2. After averaging over all 28 syndrome frames, the eigenvalues of 𝐷2 cluster into degenerate levels.
Numerical diagonalization yields 64 distinct nonzero eigenvalue levels. The Fano geometry contributes an
offset:

ΔFano = 7 + 7 + 9 = 23 (75)

counting 7 points, 7 lines, and 9 point-line incidences. The spectral screening count is:

𝑁
spec
scr = 64 + 23 = 87 (76)

Two independent methods, one counting by symmetry sector (84+3) and one counting by eigenvalue structure
(64 + 23), arrive at the same total. This agreement is a nontrivial consistency check. The two decompositions
probe different aspects of the same underlying structure.
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28.10 NUMERICAL EMERGENCE OF THE CORRECTION STRUCTURE

The perturbative coefficients can be extracted numerically from spectral data without assuming their form.
Define:

𝛿1 = 𝛼−1
spectral − 137 (77)

From the heat kernel computation, 𝛿1 ≈ 0.0361. The inferred screening count is:

𝑁1 =
𝜋

𝛿1
≈ 87.0 (78)

The integer 87 emerges from the spectrum. For the second-order structure, compute the ratio:

𝑅2 = −𝛿2

𝛿2
1

(79)

Numerical extraction gives 𝑅2 ≈ 0.0854 ≈ 7/82. The integers 7 and 82 emerge as a rational ratio from
spectral data. This numerical emergence is significant. The formula was not fitted to match experiment. The
integers 87, 7, and 82 arise from the eigenvalue structure of the Dirac operator on the Steane geometry. Their
agreement with the group-theoretic prediction (|PSL(2, 7) |/2 + 3 = 87, 𝑛 = 7, |PSL(2, 7) |/2 − 2 = 82) is a
test of the framework.

28.11 HEAT KERNEL CONFIRMATION

The Fano-enhanced heat kernel 𝐾Fano(𝑡) = Tr(𝑒−𝑡𝐷2) + ΔFano can be evaluated at structural scales to confirm
the correction. At the structural scale 𝑡∗ = 3𝜋/4 (the geometric quarter-turn 𝜋/4 times the code distance
𝑑 = 3):

𝐾Fano

(
3𝜋
4

)
= 137.10 (80)

This places the correction in the 𝜋/87 range and confirms the sign. The scale 3𝜋/4 is the timescale at which a
defect completes one coherent screening cycle around a syndrome plaquette. The heat kernel at the critical
scale 𝑡 = 𝜋/2 satisfies a self-consistency condition. Evaluating 𝐾 at 𝑡 = (𝜋/2) (1 + 𝛼) and requiring the result
to equal 𝛼−1 converges in four iterations to 𝛼−1 = 137.036. This self-consistency links the definition of the
coupling to the scale at which it is measured.

28.12 SUMMARY OF THE FINE-STRUCTURE CONSTANT

The fine-structure constant correction has a complete structural derivation:
1. The base value 137 = 27 +32 counts quantum channels (Hilbert space dimension) plus geometric channels

(syndrome-frame incidences).
2. The critical scale 𝑡 = 𝜋/2 is where the electromagnetic sector operates, at the balance between coherence

and decoherence.
3. The screening count 𝑁scr = 87 comes from orientation-preserving automorphisms (84) plus frame-

distinguished stabilizer modes (3).
4. The perturbative series has coefficients determined by cell size (𝑛 = 7), effective screening (𝑁eff = 82),

and the automorphism group (|PSL(2, 7) | = 168).
5. The exponential resummation packages the series into a closed form where the suppression factor
𝜖 = 7𝜋/(87 × 82) measures screening cost per qubit.

6. Independent verification from spectral methods (64 + 23 = 87) confirms the group-theoretic count.
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The final result:
𝛼−1 = 2𝑛 + 𝑑2 + 𝜋

𝑁scr
· exp

(
− 𝑛𝜋

𝑁scr · 𝑁eff

)
= 137.0359991 (81)

All parameters trace to the Steane code structure: 𝑛 = 7 (physical qubits), 𝑑 = 3 (code distance), 𝑁scr = 87
(screening modes), 𝑁eff = 82 (effective screening). The fine-structure constant is determined by the
information-theoretic structure of the vacuum code.

28.13 THE ATOMIC LIMIT

The capacity interpretation predicts the end of the periodic table. Each proton occupies a fraction 𝛼 = 1/137
of the vacuum’s electromagnetic bandwidth:

Electromagnetic load = 𝑍 · 𝛼 =
𝑍

137
(82)

When 𝑍 ≳ 137, the nucleus exhausts all available modes. No headroom remains for quantum fluctuations;
the vacuum becomes unstable to pair production. This is the Dirac instability as a capacity threshold.

29 THE ANOMALOUS MAGNETIC MOMENT

The fine-structure constant measures the vacuum’s electromagnetic capacity at zeroth order. The anomalous
magnetic moment measures how that capacity is sampled by higher-order processes. The electron g-factor is:

𝑎𝑒 =
𝑔 − 2

2
= 0.001 159 652 180 59 (13). (83)

This represents 13 significant figures of precision. In quantum electrodynamics, the anomaly expands as a
power series in 𝛼/𝜋:

𝑎𝑒 =

∞∑︁
𝑛=1

𝐶𝑛

(𝛼
𝜋

)𝑛
. (84)

The coefficients 𝐶𝑛 are computed from Feynman diagrams. The first four are known precisely. The code
structure determines each coefficient.

29.1 THE SCHWINGER TERM

The leading correction arises from one virtual photon loop. In code terms, this represents the electron (an
X-sector defect) emitting and reabsorbing a stabilizer phase fluctuation. The amplitude is determined by the
protection ratio of the code:

𝐶1 =
𝑘

𝑑 − 1
=

1
3 − 1

=
1
2
. (85)

This is exact. The same ratio (𝑑 − 1)/𝑘 = 2 appears as the Schwarzschild coefficient in Part IX.

29.2 HIGHER-ORDER COEFFICIENTS

At each order, the electron traverses additional structure in the Fano/Heawood geometry. The base contribution
at second order involves the code distance:

𝐶
(0)
2 = − 𝑘

𝑑
= −1

3
. (86)

The automorphism group PSL(2,7) contributes screening:

𝐶2 = − 𝑘
𝑑
+ 𝑘

|PSL(2, 7) | = −1
3
+ 1

168
= − 55

168
= −0.32738. (87)
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The experimental value is −0.32848, an error of 0.3%.
The third-order coefficient involves propagation across the stabilizer structure:

𝐶3 =
𝑛

𝑛 − 𝑘 + 1
𝑛(𝑛 + 𝑑) =

7
6
+ 1

70
= 1.1810. (88)

The experimental value is 1.1812, an error of 0.02%.
The fourth-order coefficient:

𝐶4 = − 𝑛𝑑

𝑛 + 𝑑 + 𝑘 − 𝑘

|PSL| + 2𝑛 + 𝑑 = −21
11

− 1
188

= −1.9143. (89)

The experimental value is −1.9144, an error of 0.005%.

29.3 PATTERN AND SUMMARY

The coefficients follow a systematic pattern:

Order CCT Formula Predicted Error

𝐶1 𝑘/(𝑑 − 1) 0.5 exact
𝐶2 −𝑘/𝑑 + 𝑘/|PSL| −0.32738 0.3%
𝐶3 𝑛/(𝑛 − 𝑘) + 1/(𝑛(𝑛 + 𝑑)) 1.1810 0.02%
𝐶4 −𝑛𝑑/(𝑛 + 𝑑 + 𝑘) − 𝑘/(|PSL| + 2𝑛 + 𝑑) −1.9143 0.005%

Each coefficient has a leading term from simple code ratios and a correction involving the PSL(2,7) structure.
The full series gives 𝑎𝑒 = 0.001 159 655. The experimental value is 0.001 159 652 18, an agreement to
2 × 10−8, limited by the unknown fifth-order coefficient.

29.4 THE MUON ANOMALY

The muon anomalous magnetic moment exhibits a persistent tension between theory and experiment at the
4𝜎 level. The discrepancy Δ𝑎𝜇 ≈ 2.5× 10−9 has a structural interpretation. The muon is a second-generation
lepton. Its coupling to the vacuum differs from the electron by the generation factor 𝜀 = 1/𝑛 and the
automorphism count:

Δ𝑎𝜇 =
𝛼3

|PSL(2, 7) | − 𝑛 − 𝑑 − 𝑘 =
𝛼3

156
= 2.49 × 10−9. (90)

The experimental discrepancy is (2.51 ± 0.59) × 10−9, an agreement of 0.8%.

30 ELECTROWEAK SECTOR

30.1 THE WEINBERG ANGLE

The Weinberg angle 𝜃𝑊 parametrizes the mixing between weak and electromagnetic interactions. We
interpret the weak interaction as the error-correcting sector (short-range, restoring vacuum state) and the
electromagnetic interaction as the information-preserving sector (long-range, charge-conserving). The
electroweak capacity at low energies is 𝐶EW = 𝑛 + (𝑛 − 𝑘) = 7 + 6 = 13. The weak sector capacity (one
stabilizer type) is 𝐶weak = 3. The Weinberg angle is the ratio of weak to electroweak capacity:

sin2 𝜃𝑊 =
𝐶weak
𝐶EW

=
3
13

≈ 0.2308. (91)
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The measured value is sin2 𝜃𝑊 (𝑀𝑍 ) = 0.23122 ± 0.00003. The agreement is at the 0.2% level. At high
energies, only core degrees of freedom contribute: 𝐶GUT = 𝑛 + 𝑘 = 7 + 1 = 8. The high-energy Weinberg
angle is sin2 𝜃𝑊 (GUT) = 3/8 = 0.375, which is exactly the standard GUT prediction at unification. The
running from 3/8 at high energies to 3/13 at 𝑀𝑍 reflects the activation of stabilizer degrees of freedom at
longer wavelengths.

30.2 THE W BOSON MASS

The W boson mass exhibits a notable tension between measurements:

𝑀PDG
𝑊 = 80.377 ± 0.012 GeV (92)

𝑀CDF
𝑊 = 80.4335 ± 0.0094 GeV. (93)

The CDF measurement is 7𝜎 above the Standard Model prediction. The code structure determines 𝑀𝑊
through the electroweak gauge coupling. The electromagnetic coupling runs with energy scale. In the code
framework:
• At infrared (atomic scale): 𝛼−1 = 2𝑛 + 𝑑2 = 137
• At ultraviolet (electroweak scale): 𝛼−1 = 2𝑛 = 128
The running of 𝛼 reflects the progressive deactivation of geometric screening modes at shorter wavelengths.
The W mass formula involves the electroweak gauge coupling:

𝑀𝑊 =
𝑣

2

√︄
4𝜋𝛼(𝑀𝑍 )
sin2 𝜃𝑊

. (94)

With CCT parameters 𝑣 = 247 GeV, 𝛼(𝑀𝑍 )−1 = 128, and sin2 𝜃𝑊 = 3/13:

𝑀𝑊 = 80.5 GeV. (95)

This prediction is 0.15% above the CDF value and 0.2% above the PDG average. The code structure favors
the anomalous CDF measurement.

30.3 THE EFFECTIVE WEAK MIXING ANGLE

The effective weak mixing angle at 𝑀𝑍 includes radiative corrections:

sin2 𝜃eff
𝑊 =

𝑑

𝑛 + (𝑛 − 𝑘) ×
(
1 + 𝛼 · 𝑑

𝑛 + 𝑘

)
=

3
13

×
(
1 + 3

137 × 8

)
= 0.2314. (96)

The measured value is 0.23153 ± 0.00016, an error of 0.04%.

30.4 THE 𝜌 PARAMETER

The 𝜌 parameter measures the ratio of neutral to charged current strengths:

𝜌 =
𝑀2
𝑊

𝑀2
𝑍

cos2 𝜃𝑊
. (97)

At tree level with CCT values, 𝜌 = 1 exactly. The radiative correction from the top quark (𝑚𝑡 = 176 GeV
from Part VIII):

𝛿𝜌 =
3𝐺𝐹𝑚2

𝑡

8
√

2𝜋2
= 0.0097. (98)

The predicted 𝜌 = 1.0097. The experimental value is 1.01019 ± 0.00023, an error of 0.05%.
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30.5 Z BOSON WIDTHS

The partial width to charged leptons:

Γ(𝑍 → ℓ+ℓ−) =
𝐺𝐹𝑀

3
𝑍

6𝜋
√

2
(𝑣2
ℓ + 𝑎

2
ℓ). (99)

With sin2 𝜃𝑊 = 3/13, the vector and axial couplings are 𝑣ℓ = −1/2 + 2 sin2 𝜃𝑊 = −1/26 and 𝑎ℓ = −1/2.
The predicted width is Γ(𝑍 → ℓℓ) = 84.5 MeV. The experimental value is 83.984 ± 0.086 MeV, an error of
0.6%. The invisible width (three neutrino species) is predicted to be 504 MeV. The experimental value is
499.0 ± 1.5 MeV, an error of 1%.

30.6 FORWARD-BACKWARD ASYMMETRY

The electron asymmetry parameter:

𝐴𝑒 =
2𝑣𝑒𝑎𝑒
𝑣2
𝑒 + 𝑎2

𝑒

=
2(−1/26) (−1/2)
(1/26)2 + (1/2)2 = 0.153. (100)

The experimental value is 0.1515 ± 0.0019, an error of 1%.

31 QCD SECTOR

31.1 THE STRONG COUPLING

The strong coupling 𝛼𝑠 at the 𝑍 boson mass (𝑀𝑍 ≈ 91 GeV) has 𝛼−1
𝑠 ≈ 8.5, close to the geometric capacity:

𝛼−1
𝑠 ≈ 𝐶geometric = 𝑑

2 = 9. (101)

The interpretation is that the strong interaction is governed by the geometric sector. Quarks (Z-type defects)
couple to geometric modes; leptons (X-type defects) do not feel the strong force. The fact that 𝛼−1

𝑠 ≈ 𝑑2

suggests that QCD probes the spatial structure of the vacuum code, while QED probes its quantum core.

31.2 THE CONFINEMENT SCALE

The QCD scale parameter ΛQCD sets the scale of color confinement. In the MS scheme with five flavors:

Λ
(5)
QCD = 𝑑𝑈 = 3 × 70.025 = 210.1 MeV. (102)

The experimental value is 210 ± 14 MeV. The central values match to within 0.05%. The confinement scale
equals three times the mesonic quantum (developed in Part VIII), connecting the scale of hadronic physics to
the code distance.

31.3 DECAY CONSTANTS

The pion decay constant:

𝑓𝜋 =
𝑛 + (𝑛 − 𝑘)

𝑛
×𝑈 =

13
7

× 70.025 = 130.0 MeV. (103)

The experimental value is 130.2 MeV, an error of 0.15%.
The kaon-to-pion ratio measures SU(3) flavor breaking:

𝑓𝐾

𝑓𝜋
= 1 + 𝑑 − 𝑘

𝑛 + 𝑑 = 1 + 2
10

= 1.200. (104)

This gives 𝑓𝐾 = 156.0 MeV. The experimental value is 155.7 MeV, an error of 0.2%.
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31.4 THE QUARK CONDENSATE

The QCD vacuum condensate at 2 GeV:

⟨𝑞𝑞⟩1/3 = −(𝑛 − 𝑑)𝑈 = −4 × 70 = −280 MeV. (105)

The experimental value is approximately −270 MeV, an error of 4%.

32 RARE DECAYS

The capacity-limited vacuum permits rare processes only through constrained pathways. The branching ratios
encode these constraints.

32.1 𝐵𝑠 → 𝜇+𝜇−

This decay is loop-suppressed and helicity-suppressed, making it sensitive to new physics. The branching
ratio has a simple form:

BR(𝐵𝑠 → 𝜇𝜇) = 𝑑 × 10−𝑑2
= 3 × 10−9. (106)

The structure is as follows: the flavor-changing neutral current requires traversing 𝑑2 = 9 syndrome screening
layers, each contributing a factor of 1/10 to the amplitude. The prefactor 𝑑 = 3 counts the independent
stabilizer pathways mediating the transition. The experimental value is (3.09 ± 0.46) × 10−9, an error of 3%.

32.2 CP VIOLATION IN KAONS

The CP-violating parameter 𝜀 in neutral kaon mixing:

|𝜀 | = 1
(𝑛𝑑)2 + (𝑛 + 𝑘)

=
1

441 + 8
=

1
449

= 2.227 × 10−3. (107)

The experimental value is (2.228 ± 0.011) × 10−3, an agreement of 0.04%.
The additive structure reflects the physics: (𝑛𝑑)2 = 212 encodes double Cabibbo suppression from the

mixing box diagram (each flavor-changing vertex contributes 1/
√
𝑛𝑑), while 𝑛 + 𝑘 = 8 counts the logical

pathways for CP-odd interference. The same geometry determines other CP observables: 𝛿 = arccos(𝑑/𝑛) =
64.6 (measured: 65 ± 2) and sin(2𝛽) = 𝑛/(𝑛 + 𝑑) = 0.700 (measured: 0.699 ± 0.017).

32.3 𝐾+ → 𝜋+𝜈𝜈̄

One of the rarest precisely predicted decays:

BR(𝐾+ → 𝜋+𝜈𝜈̄) = 𝑛 + 𝑘
𝑛

× 10−(𝑛+𝑑) =
8
7
× 10−10 = 1.14 × 10−10. (108)

The experimental value is approximately 10−10, consistent within experimental uncertainties.
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Part VIII: The Mass Hierarchy
33 THE ORIGIN OF MASS

The fermion masses span twelve orders of magnitude. The top quark at 173 GeV is 1012 times heavier than the
lightest neutrino. This hierarchy emerges from a single mechanism: mass is the processing cost of maintaining
chiral coherence on an actively corrected vacuum. The derivation proceeds in four layers. First, a transport
mechanism separates massive from massless propagation. Second, a universal ladder of scales descends
from the Planck mass through powers of 𝜋−1, with the electron occupying a rung fixed by the code fraction
𝑑/(𝑛 + 𝑘) = 3/8. Third, dimensionless mass ratios follow from code arithmetic alone, achieving sub-percent
accuracy without spectral corrections. Fourth, the unified mass formula with Heawood propagation fixes
absolute masses across generations. The only inputs are the Steane parameters (𝑛, 𝑘, 𝑑) = (7, 1, 3), the
automorphism group order |PSL(2, 7) | = 168, and the Heawood eigenvalues 𝜆1 = 3, 𝜆2 =

√
2.

33.1 TWO TRANSPORT MODES

Two qualitatively different behaviors arise for excitations propagating on the vacuum lattice.

Symmetric transport. A parity-even excitation spreads by random walk. At each lattice step, the excitation
moves to one of six neighbors with equal probability. This diffusive motion is robust against disorder.
When the vacuum contains stabilizer violations (virtual pairs, quantum fluctuations), symmetric modes find
alternative paths around obstacles. Their transmission probability decays algebraically:

𝑇sym(𝑟) ∼ 𝑟−𝛼. (109)

Particles propagating via symmetric transport remain massless. The photon is an example: stabilizer phase
updates spread by random-walk averaging, and in the continuum limit this produces the linear wave equation
with an emergent light cone.

Chiral transport. A parity-odd excitation maintains directional coherence. In a clean vacuum, chiral
transport achieves full throughput: the excitation travels ballistically at the lattice speed. This mode is fast
but fragile. In a vacuum populated by stabilizer violations, chiral trajectories encounter obstacles that force
them into closed loops. The excitation circles repeatedly, losing forward progress. This is analogous to
Anderson localization in disordered conductors. Above a critical defect density, chiral transmission becomes
exponentially suppressed:

𝑇chiral(𝑟) ∼ 𝑒−𝑟/𝜉 . (110)

The localization length 𝜉 depends on defect density and lattice geometry. The effective mass is the inverse
localization length:

𝑚eff =
ℏ

𝑐 𝜉
. (111)

Mass is the cost of maintaining chiral coherence in a fluctuating background.

33.2 THE VACUUM DEFECT DENSITY

The vacuum is not perfectly ordered. Quantum fluctuations spontaneously create and annihilate stabilizer
violations at some equilibrium density 𝜌. This density is set by the balance between the energy cost of
creating a violation (proportional to 𝐽stab) and the entropy gain from distributing violations across the lattice.
As defect density increases, symmetric and chiral modes diverge in behavior. Symmetric modes maintain
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robust transmission by diffusing around obstacles. Chiral modes undergo a sharp crossover: below a critical
density 𝜌𝑐, transmission is nearly ballistic; above 𝜌𝑐, transmission is exponentially localized. The vacuum
operates near this critical density. This is the natural operating point for a throughput-optimized system.
Operating below 𝜌𝑐 would leave error-correction capacity unused. Operating far above 𝜌𝑐 would freeze chiral
transport entirely. The observed fermion masses reflect this near-critical operating point.

33.3 THE HIGGS FIELD AS ORDER PARAMETER

The Higgs field 𝜙 controls the vacuum’s defect density. The Higgs potential arises from competition between
throughput and error correction cost. Throughput favors a nonzero condensate. When 𝜙 ≠ 0, stabilizer links
acquire finite expectation values, allowing information to flow more efficiently between sites. The condensate
enables virtual defect-antidefect pairs to mediate interactions; the rate of such processes scales with the pair
density 𝜌 ∝ 𝜙2. This generates an attractive contribution:

𝑉throughput = −𝜇2𝜙2. (112)

Error correction failure provides the opposing term. The Steane code has distance 𝑑 = 3: it corrects
single-qubit errors but fails when two errors occur in the same block. The probability of correlated failure
scales as the square of the single-error rate. Since single-error rate is proportional to 𝜙2, the failure rate scales
as 𝜙4:

𝑉cost = +𝜆𝐻𝜙4. (113)

The total potential is the Mexican hat:

𝑉 (𝜙) = −𝜇2𝜙2 + 𝜆𝐻𝜙4. (114)

The vacuum settles at 𝑣 =
√︁
𝜇2/(2𝜆𝐻). Excitations around this minimum are the Higgs boson. Fermion

masses follow the standard form 𝑚 𝑓 = 𝑦 𝑓 𝑣, where the Yukawa coupling 𝑦 𝑓 measures how strongly each
defect type samples the condensate. The coupling strength depends on the defect’s position in the Fano
geometry.

34 THE ABSOLUTE MASS SCALE

The coupling constants of Part VII are dimensionless. They specify relative strengths but not absolute scales.
The electron mass is 0.511 MeV. The Planck mass is 1.22 × 1019 GeV. Their ratio:

𝑀𝑃

𝑚𝑒
≈ 2.4 × 1022. (115)

This 22-order-of-magnitude hierarchy requires explanation. The electron plays a distinguished role: it is
the lightest charged fermion and therefore sets the absolute scale from which all other masses follow. The
derivation below fixes the electron mass from code capacity. Heavier fermions are then determined by their
positions in the Fano geometry relative to this anchor.

34.1 THE 𝜋-LADDER

Part VI established that 𝜋 characterizes the continuum limit of the discrete 𝐴2 lattice. Random walks
converge to Gaussians normalized by 1/(2𝜋𝐷𝑡). Wave dispersion produces isotropic cones with angular
integrals

∫ 2𝜋
0 𝑑𝜃. The transcendental 𝜋 encodes the transition from discrete steps to continuous rotation.

This emergence has consequences for mass scales. A particle defined 𝑁 layers deep in the continuum limit
acquires a mass scaling as 𝜋−𝑁 relative to the Planck scale. Each power of 𝜋−1 represents one cycle of phase
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integration over the discrete substrate. Define recovery depth 𝑁𝜋 as follows. Let D be the local recovery
channel of the vacuum code (syndrome extraction followed by minimal recovery). For a defect excitation,
𝑁𝜋 is the minimum number of coarse-graining steps required before the defect has support on a resolved
continuum mode. Each step contributes one factor of 𝜋−1. The mass ladder:

𝑚 = 𝑀𝑃 · 𝜋−𝑁𝜋 · 𝑒−2𝛼. (116)

The factor 𝑒−2𝛼 accounts for electromagnetic self-energy at the first charged scale.

34.2 THE ELECTRON RUNG

The integer 𝑁𝜋 is selected by code capacity. Define the dimensionless ratio:

𝜅 ≡ ln(𝑀𝑃/𝑚)
𝛼−1 . (117)

This measures what fraction of the coupling constant entropy is consumed by the mass hierarchy. For the
electron:

𝜅𝑒 =
ln

(
2.4 × 1022)
137.036

=
51.528

137.036
= 0.376. (118)

This matches a code fraction:
𝑑

𝑛 + 𝑘 =
3
8
= 0.375. (119)

Agreement: 0.3%.
The code distance 𝑑 = 3 measures error correction capability, and the total footprint 𝑛 + 𝑘 = 8 counts logical
and physical qubits. The ratio 𝑑/(𝑛 + 𝑘) measures how much of the vacuum’s entropy budget a particle
consumes to maintain its identity against decoherence. The corresponding rung is 𝑁𝜋,𝑒 = 45:

𝜅𝑒 =
𝑁𝜋,𝑒 ln 𝜋
𝛼−1 =

45 × 1.145
137.036

= 0.376. (120)

The electron mass formula:
𝑚𝑒 = 𝑀𝑃 · 𝜋−45 · 𝑒−2𝛼. (121)

This predicts the electron mass with error 8 × 10−6.

34.3 OTHER RUNGS

The pattern extends to other scales:

Electroweak scale (𝑁𝜋 ≈ 34). The fraction (𝑑 − 1)/(𝑛 + 𝑘) = 2/8 = 1/4 marks the electroweak threshold.

Neutrino scale (𝑁𝜋 = 60). The offset from the electron is Δ𝑁𝜋 = 15 = 2𝑛−𝑑 − 1. The exponent 𝑛 − 𝑑 = 4
counts syndrome bits for correctable errors. There are 24 = 16 patterns: one trivial (the neutrino, which
produces no syndrome) and 15 nontrivial (charged fermions). The mass gap between neutral and charged
particles equals the nontrivial syndrome space size.

Generation spacing (Δ𝑁𝜋 = 4). Each Fano point lies on exactly 3 of the 7 lines. The complement contains
7 − 3 = 4 lines. Shifting to a new generation requires traversing this complement subspace. The mass ratio
between generations is 𝜋4 ≈ 97.

35 THE ELECTROWEAK SCALE

The mass formula uses the Higgs vacuum expectation value 𝑣. This scale is itself derived from code structure.
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35.1 THE HIGGS VEV

The automorphism group of the Fano plane is PSL(2,7), of order 168. The reconstruction number of the code
is 𝑛 − 𝑑 + 1 = 5: the minimum qubits needed to determine the logical state. The electroweak scale is the
density of vacuum symmetries per reconstruction degree:

𝑁𝐻 =
|PSL(2, 7) |
𝑛 − 𝑑 + 1

=
168

5
= 33.6. (122)

At tree level:
𝑣tree = 𝑀𝑃 × 𝜋−𝑁𝐻 = 𝑀𝑃 × 𝜋−33.6 = 241 GeV. (123)

35.2 ELECTROWEAK MIXING CORRECTION

The tree-level value assumes complete separation of X and Z sectors. Electroweak symmetry breaking
is incomplete: residual mixing persists below the breaking scale, parametrized by the Weinberg angle
sin2 𝜃𝑊 = 3/13. The geometric dimension is 𝑛 + 𝑑 = 10. The correction:

correction =
1

1 − sin2 𝜃𝑊/(𝑛 + 𝑑)
=

1
1 − (3/13)/10

= 1.0236. (124)

The corrected Higgs VEV:
𝑣 = 241 × 1.0236 = 247 GeV. (125)

Measured: 246.22 GeV. Error: 0.3%.

35.3 THE HIGGS BOSON MASS

The Higgs mass is set by the self-coupling through 𝑚𝐻 =
√

2𝜆𝐻 𝑣. The exponent 𝑑 − 𝑘 = 2 counts the excess
of error correction constraints beyond the logical dimension:

𝑚𝐻 =
𝑣

√
2𝑑−𝑘

=
𝑣

2
= 123 GeV. (126)

Measured: 125.25 GeV. Error: 1.8%.

36 MASS RATIOS AS STRUCTURAL INVARIANTS

Before deriving absolute masses, we examine dimensionless ratios. These provide the cleanest tests of the
theory because they depend only on code parameters and group structure, without requiring the spectral
corrections needed for absolute predictions.

36.1 THE PROTON-ELECTRON RATIO

The proton is a color-singlet bound state sampling all configurations of the PSL(2,7) automorphism group. The
electron is a single X-sector defect sampling one configuration. Their mass ratio counts how much more vacuum
structure the proton engages. The proton visits all |PSL(2, 7) | = 168 equivalent configurations as its constituent
quarks exchange color. At each configuration, it samples the full code footprint: 𝑛 = 7 physical qubits, 𝑑 = 3
distance constraints, 𝑘 = 1 logical degree of freedom. The total count is 168× (𝑛+ 𝑑 + 𝑘) = 168× 11 = 1848.
The 2(𝑛 − 𝑘) = 12 stabilizer constraints represent gauge degrees of freedom that do not contribute to the
physical mass. The ratio:

𝑚𝑝

𝑚𝑒
= 168(𝑛 + 𝑑 + 𝑘) − 2(𝑛 − 𝑘) = 168 × 11 − 12 = 1836. (127)

Measured: 1836.15. Error: 0.008%.
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36.2 THE MUON-ELECTRON RATIO

The muon and electron are both X-sector defects differing only in generation. Their ratio probes how
generation structure couples to the electromagnetic sector. The code distance 𝑑 = 3 counts correctable error
weight. The fine structure constant 𝛼−1 = 137.036 measures the channel capacity per link. Each generation
step traverses 𝑑 error-correction layers, accumulating electromagnetic coupling at each layer. The logical
dimension 𝑘 = 1 contributes an additive offset from the encoded qubit. The factor of 2 in the denominator
reflects the two stabilizer sectors (X and Z). Leptons couple only to the X sector, so they sample half the full
structure. The ratio:

𝑚𝜇

𝑚𝑒
=
𝑑 · 𝛼−1 + 2𝑘

2
=

3 × 137.036 + 2
2

= 206.55. (128)

Measured: 206.77. Error: 0.13%.

36.3 THE TAU-MUON RATIO

The tau and muon differ by one generation. Their ratio involves the qubit count 𝑛 = 7 and distance 𝑑 = 3.
The numerator 𝑛2 + 1 = 50 counts the dimension of the two-qubit Hilbert space (72 = 49) plus one logical
degree of freedom. The denominator 𝑑 = 3 normalizes by the error-correction depth. The ratio:

𝑚𝜏

𝑚𝜇
=
𝑛2 + 1
𝑑

=
49 + 1

3
=

50
3

= 16.67. (129)

Measured: 16.82. Error: 0.9%.

36.4 THE KOIDE RELATION

The three charged lepton masses satisfy a constraint discovered empirically by Koide in 1982. Define:

𝑄 =
𝑚𝑒 + 𝑚𝜇 + 𝑚𝜏

(√𝑚𝑒 +
√
𝑚𝜇 +

√
𝑚𝜏)2 . (130)

Using PDG masses,𝑄exp = 0.666661. The Koide parameter has a geometric interpretation. The mass-squared
operator for charged leptons projects onto a subspace spanned by 𝑑 = 3 independent syndrome directions.
The numerator 2 counts the correctable error types (X and Z) that leptons can carry. The ratio 2/𝑑 measures
the fractional weight of this projection. The code prediction:

𝑄 =
2
𝑑
=

2
3
. (131)

The deviation from 2/3 is less than one part in 105.

36.5 IMPLICATIONS

These four ratios span the charged lepton sector and connect it to the baryon sector. The predictions involve
only:
• Code parameters: (𝑛, 𝑘, 𝑑) = (7, 1, 3)
• Group order: |PSL(2, 7) | = 168
• Fine structure constant: 𝛼−1 = 137.036
The mean error across the four ratios is 0.3%. The proton-electron ratio achieves 0.008% using only integer
arithmetic. They follow directly from the algebraic structure of the code. The unified mass formula of the
following section extends this approach to absolute masses. The additional machinery of spectral corrections
is needed because absolute masses require specifying how each particle couples to the Higgs condensate, not
just how particles relate to each other.
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37 THE UNIFIED MASS FORMULA

All nine charged fermion masses follow from a single formula. This section first states the formula with each
variable defined operationally, then derives the spectral corrections from the Heawood graph, then applies the
formula to each particle.

37.1 THE FORMULA

𝑚 = 𝑣 × 𝜀 𝛼𝑏+𝛽 (4−gen)+𝛾 × C (132)

Each variable:

Symbol Definition Value

𝑣 Higgs VEV (derived above) 246 GeV
𝜀 Generation suppression = 1/𝑛 1/7 = 0.143
𝛽 Generation step = 𝑛stab/𝑑 6/3 = 2
𝛼𝑏 Base offset = −(𝛽 − 1) −1
gen Generation number {1, 2, 3}
𝛾 Type offset from stabilizer asymmetry {0, 0.5, 1}
C Spectral correction from Heawood propagator (computed below)

The generation suppression 𝜀 = 1/𝑛 comes from the qubit count. Each generation samples one of 𝑛 = 7
distinguishable Fano positions. The generation step 𝛽 = 2 comes from the stabilizer-to-distance ratio
𝑛stab/𝑑 = 6/3. The six stabilizer generators are organized along three Fano lines (the code distance), so
moving one generation requires two stabilizer steps. The base offset 𝛼𝑏 = −1 normalizes the formula so
generation 3 particles have the largest masses.

37.2 TYPE OFFSET FROM STABILIZER ASYMMETRY

The type offset 𝛾 distinguishes quarks from leptons and up-type from down-type. Its origin is the asymmetric
coupling to X and Z stabilizer sectors. Each qubit participates in exactly 3 of the 6 stabilizers. How those 3
partition between X-type and Z-type determines the particle type. Define the sector asymmetry:

𝐴(𝑞) = |𝑁𝑋 (𝑞) − 𝑁𝑍 (𝑞) |
𝑁𝑋 (𝑞) + 𝑁𝑍 (𝑞)

, (133)

where 𝑁𝑋 (𝑞) and 𝑁𝑍 (𝑞) count how many X-type and Z-type stabilizers qubit 𝑞 participates in. The type
offset follows as 𝛾 = 3

2 𝐴. Three configurations arise:

(𝑁𝑋, 𝑁𝑍 ) 𝐴(𝑞) 𝛾 Particle type

(2, 2) 0 0 Up-type quarks
(2, 1) or (1, 2) 1/3 0.5 Down-type quarks

(3, 0) 1 1.5 → 1 Charged leptons

The central qubit of a Steane cell couples equally to both stabilizer triads, giving 𝐴 = 0 (up-type quarks).
Peripheral qubits couple to two stabilizers of one type and one of the other, giving 𝐴 = 1/3 (down-type
quarks). Leptons are pure X-sector defects with 𝑁𝑍 = 0. Their naive asymmetry 𝐴 = 1 would give 𝛾 = 1.5,
but the absence of Z-sector coupling removes one degree of freedom, reducing the effective offset to 𝛾 = 1.
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38 THE HEAWOOD GRAPH AND SPECTRAL CORRECTIONS

The unified formula contains a spectral correction C that modifies the baseline mass prediction. Without this
correction, the formula would predict identical masses for all particles of the same generation and type. The
observed spectrum shows additional structure: the charm quark is heavier than expected from generation
alone, while the up quark is lighter. These deviations reflect how strongly each particle couples to the Higgs
condensate, which depends on propagation through the vacuum geometry. Particles near the condensate
source couple strongly and acquire large masses. Particles far from the source couple weakly and remain
light. The spectral correction C measures this propagation amplitude.

38.1 THE HEAWOOD GRAPH AND ITS SPECTRUM

The natural arena for Higgs-to-fermion propagation is the incidence graph of the Fano plane: the Heawood
graph. It has 14 vertices, consisting of 7 point-vertices representing qubits and 7 line-vertices representing
stabilizers. An edge connects a point to a line whenever the corresponding qubit participates in that stabilizer.
The graph is 3-regular (each vertex has degree 3) and bipartite (edges only connect points to lines).

The bipartite structure has a physical consequence. Propagation between two qubits must pass through an
intermediate stabilizer vertex. There is no direct qubit-to-qubit coupling. This reflects the code structure:
qubits interact only through the stabilizers that constrain them.

The adjacency matrix has eigenvalues:

𝜆 ∈ {+3,−3} (multiplicity 1 each), 𝜆 ∈ {±
√

2} (multiplicity 6 each). (134)

Two eigenvalues control mass propagation. The largest eigenvalue 𝜆1 = 3 equals the graph degree and governs
uniform spreading across all vertices. The second eigenvalue 𝜆2 =

√
2 is the Ramanujan bound for a 3-regular

bipartite graph and governs position-dependent modes that decay with graph distance. The Heawood graph
achieves the Ramanujan bound exactly, the condition for optimal spectral expansion.

38.2 PROPAGATION AND PARTICLE POSITIONS

The Higgs condensate occupies a central vertex 𝑞0. The heat kernel 𝐾 (𝑡) = 𝑒−𝑡𝐿 describes diffusive
propagation on the graph, where 𝐿 = 𝐷 − 𝐴 is the graph Laplacian. At the critical timescale 𝑡𝑐 = 1/𝑛 = 1/7,
the spectral correction for a particle at vertex 𝑞 is:

C(𝑞) =
𝐾 (𝑡𝑐)𝑞,𝑞0

𝐾 (𝑡𝑐)𝑞0,𝑞0

. (135)

Large C indicates strong coupling to the condensate and large mass. Small C indicates weak coupling and
small mass. The Heawood graph has 7 qubit vertices. The Higgs condensate occupies one; the remaining
6 host fermion defects. The assignment of particles to vertices follows from two physical criteria. First,
generation correlates with graph distance: generation 3 particles occupy vertices closest to 𝑞0 (graph distance
2), generation 1 particles occupy the most distant vertices (graph distance 4), and generation 2 occupies
intermediate positions. Second, type correlates with sector membership: up-type quarks couple symmetrically
to X and Z sectors, down-type quarks couple asymmetrically, and leptons couple only to the X sector. Sector
membership determines how particles interact with the Ramanujan eigenmodes, which have opposite signs on
the two parts of the bipartite graph. The bipartite structure imposes a selection rule. Define the spectral depth
𝑠(𝑞) = ⌊𝑑 (𝑞, 𝑞0)/2⌋, where 𝑑 (𝑞, 𝑞0) is the graph distance. The baseline correction at spectral depth 𝑠 is:

Cbaseline(𝑠) =
𝑠∏
𝑖=1

1
𝜆𝑖
, (136)
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where eigenvalues apply in order: first 𝜆1 = 3, then 𝜆2 =
√

2. This gives C = 1 at the reference, C = 1/3 at
depth 1 (generation 3), and C = 1/(3

√
2) at depth 2 (generation 1). Generation 2 particles sit at intermediate

positions where the baseline rule requires modification.

38.3 COMPUTING THE SPECTRAL CORRECTIONS

Four positions on the Heawood graph have propagator amplitudes that differ from the baseline rule. The
particle occupying each position is determined by generation (graph distance) and type (sector membership).

The source position. The vertex 𝑞0 hosting the Higgs condensate. A defect here equilibrates directly on the
mixing timescale:

𝑡mix =
𝜆1

𝜆1 − 𝜆2
ln |𝑉 | = 3

3 −
√

2
ln 14 ≈ 5. (137)

The correction is C = 𝑡mix/𝑛 = 5/7. This position hosts an up-type quark at generation 3: the top. Because
the top shares its defining lines with the Higgs, it bypasses the generational suppression factor entirely.

The enhanced position. One vertex at spectral depth 1 has constructive interference between uniform and
Ramanujan modes:

C = 1 + 1
√

2
. (138)

This is the only position with C > 1. An up-type quark at generation 2 occupies it: the charm.

The screened position. One vertex at spectral depth 2 lies on a basis line providing direct coupling to the
condensate:

C =
𝑛 − 1
𝑛

=
6
7
. (139)

A down-type quark at generation 1 occupies it: the down.

The Ramanujan-dominant position. One peripheral vertex has the Ramanujan mode as its primary
propagation channel:

C =

√
2

9
. (140)

An up-type quark at generation 1 occupies it: the up.

Sector-dependent interference. At spectral depth 1, both uniform and Ramanujan modes contribute. The X
and Z sectors couple to Ramanujan eigenmodes with opposite phases due to the bipartite structure:

Cdepth−1 =
1
3

(
1 + 𝜎 ·

√
2

21

)
, (141)

where 𝜎 = +1 for X-sector (leptons) and 𝜎 = −1 for Z-sector (quarks). This gives C = 0.311 for bottom
and C = 0.356 for tau. The same interference modifies the up quark at the Ramanujan-dominant position:
C = (

√
2/9) (1 −

√
2/21) = 0.147.

Generation 2: Frame averaging. At generation 2 positions, the bipartite Ramanujan antisymmetry cancels.
These particles couple isotropically, averaging over all 28 distinct coordinatizations of the Fano plane (the
non-collinear point triples). The Higgs condensate breaks this symmetry by selecting one frame. Generation
2 particles sample the full average plus the symmetry-breaking contribution:

Fgen2 =
28 + 1

28
=

29
28
. (142)

This multiplies the baseline for charm, strange, and muon.
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The electron. The electron sits at maximal spectral distance, giving a baseline correction 1/(3
√

2). As the
scale anchor, it also receives the frame-averaging factor 29/28. Generation-2 particles get this factor because
Ramanujan cancellation causes isotropic coupling to all Fano frames. The electron gets it because its role as
scale-setter creates an analogous effect: computing its mass from the unified formula (referenced to the Higgs
VEV) while it simultaneously defines the absolute mass scale requires a frame-conversion correction. The
total correction:

C𝑒 =
1

3
√

2
× 29

28
. (143)

38.4 THE COMPLETE CORRECTION TABLE

Collecting all positions:

Position type Particle C Origin

Higgs center Top 5/7 Mixing equilibration
One-step, Z-sector (gen 3) Bottom 0.311 1/𝜆1 with Ramanujan
One-step, X-sector (gen 3) Tau 0.356 1/𝜆1 with Ramanujan
One-step baseline (gen 2) Strange 1

3 · 29
28 1/𝜆1 with gen-2

Reference distance (gen 2) Muon 29
28 Gen-2 finite geometry

Ramanujan-enhanced (gen 2) Charm (1 + 1/
√

2) · 29
28 Interference with gen-2

Direct channel Down 6/7 Basis line screening
Two-step baseline (scale anchor) Electron 29

28 · 1
3
√

2
1/(𝜆1𝜆2) with anchor

Peripheral Ramanujan, Z-sector Up 0.147
√

2/9 with Ramanujan

Each entry follows from evaluating the heat kernel at the specified qubit position.

39 COMPUTING THE CHARGED FERMION SPECTRUM

With all variables defined, we now walk through each particle. The formula is applied identically in each case.
The only inputs are generation, type, and position.

39.1 GENERATION 3: THE HEAVY FERMIONS

Generation 3 particles have gen = 3, giving exponent contribution 𝛽(4 − 3) = 2.

Top quark. Type: up-type, so 𝛾 = 0. Position: Higgs center, so C = 5/7.
The top quark is an up-type defect (𝑁inc = 2) at a generation-3 intersection point. Generation-3

intersections are defined by pairs of the three basis lines that also define the Higgs syndrome frame. Because
the top shares its defining lines with the Higgs, information transfer occurs through direct equilibration on
the graph mixing timescale rather than through eigenmode propagation. This direct coupling bypasses the
generational suppression factor 𝜀𝛽 (4−gen) : the top does not need to traverse eigenmode channels to reach the
condensate. The mass formula simplifies:

𝑚𝑡 = 𝑣 × Ctop = 246 × 5
7
= 175.7 GeV. (144)

Measured: 172.8 GeV. Error: 1.7%.
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Bottom quark. Type: down-type, so 𝛾 = 0.5. Position: one-step with Z-sector Ramanujan correction, so
C = 0.311.

The bottom quark follows the standard formula with sector-dependent correction:

𝑚𝑏 = 𝑣 × 𝜀−1+2(1)+0.5 × 0.311 (145)
= 246 × (1/7)1.5 × 0.311 (146)
= 246 × 0.054 × 0.311 (147)
= 4.13 GeV. (148)

Measured: 4.18 GeV. Error: 1.2%.

Tau lepton. Type: lepton, so 𝛾 = 1. Position: one-step with X-sector Ramanujan correction, so C = 0.356.

𝑚𝜏 = 𝑣 × 𝜀−1+2(1)+1 × 0.356 (149)
= 246 × (1/7)2 × 0.356 (150)
= 246 × 0.0204 × 0.356 (151)
= 1.78 GeV. (152)

Measured: 1.777 GeV. Error: 0.2%.

39.2 GENERATION 2: THE INTERMEDIATE FERMIONS

Generation 2 particles have gen = 2, giving exponent contribution 𝛽(4 − 2) = 4.

Charm quark. Type: up-type, so 𝛾 = 0. Position: Ramanujan-enhanced, so C = 1 + 1/
√

2 = 1.707.
Generation 2 correction: Fgen2 = 29/28.

𝑚𝑐 = 𝑣 × 𝜀−1+4+0 × (1 + 1/
√

2) × 29
28

(153)

= 246 × (1/7)3 × 1.707 × 1.0357 (154)
= 246 × 0.00292 × 1.768 (155)
= 1.27 GeV. (156)

Measured: 1.27 GeV. Error: 0.0%.

Strange quark. Type: down-type, so 𝛾 = 0.5. Position: one-step baseline, so C = 1/3. Generation 2
correction: Fgen2 = 29/28.

𝑚𝑠 = 𝑣 × 𝜀−1+4+0.5 × 1
3
× 29

28
(157)

= 246 × (1/7)3.5 × 0.333 × 1.0357 (158)
= 246 × 0.00110 × 0.345 (159)
= 93.2 MeV. (160)

Measured: 93 MeV. Error: 0.2%.
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Muon. Type: lepton, so 𝛾 = 1. Position: reference distance, so C = 1. Generation 2 correction:
Fgen2 = 29/28.

𝑚𝜇 = 𝑣 × 𝜀−1+4+1 × 1 × 29
28

(161)

= 246 × (1/7)4 × 1.0357 (162)
= 246 × 0.000431 (163)
= 106.0 MeV. (164)

Measured: 105.7 MeV. Error: 0.3%.

39.3 GENERATION 1: THE LIGHT FERMIONS

Generation 1 particles have gen = 1, giving exponent contribution 𝛽(4 − 1) = 6.

Up quark. Type: up-type, so 𝛾 = 0. Position: peripheral Ramanujan with Z-sector correction, so
C = (

√
2/9) (1 −

√
2/21) = 0.147.

𝑚𝑢 = 𝑣 × 𝜀−1+6+0 × 0.147 (165)
= 246 × (1/7)5 × 0.147 (166)
= 246 × 0.0000595 × 0.147 (167)
= 2.15 MeV. (168)

Measured: 2.16 MeV. Error: 0.5%.

Down quark. Type: down-type, so 𝛾 = 0.5. Position: direct channel, so C = 6/7 = 0.857.

𝑚𝑑 = 𝑣 × 𝜀−1+6+0.5 × 6
7

(169)

= 246 × (1/7)5.5 × 0.857 (170)
= 246 × 0.0000225 × 0.857 (171)
= 4.74 MeV. (172)

Measured: 4.67 MeV. Error: 1.5%.

Electron. Type: lepton, so 𝛾 = 1. Position: two-step baseline with scale-anchor correction, so C =

(29/28)/(3
√

2) = 0.244.

𝑚𝑒 = 𝑣 × 𝜀−1+6+1 × 29
28

× 1
3
√

2
(173)

= 246 × (1/7)6 × 0.244 (174)
= 0.511 MeV. (175)

Measured: 0.511 MeV. Error: < 0.1%.
The 𝜋-ladder of Section 2 independently gives 𝑚𝑒 = 𝑀𝑃 · 𝜋−45 · 𝑒−2𝛼 = 0.5110 MeV. The two derivations

agree because the 29/28 factor accounts for the electron’s role as scale anchor.
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39.4 SUMMARY TABLE

Particle Gen 𝛾 C Predicted Measured Error

Top 3 0 5/7 175.7 GeV 172.8 GeV 1.7%
Bottom 3 0.5 0.311 4.13 GeV 4.18 GeV 1.2%
Tau 3 1 0.356 1.78 GeV 1.78 GeV 0.2%

Charm 2 0 (1 + 1/
√

2) · 29
28 1.27 GeV 1.27 GeV 0.0%

Strange 2 0.5 1
3 · 29

28 93.2 MeV 93 MeV 0.2%
Muon 2 1 29

28 106.0 MeV 106 MeV 0.3%

Up 1 0 0.147 2.15 MeV 2.16 MeV 0.5%
Down 1 0.5 6/7 4.74 MeV 4.67 MeV 1.5%
Electron 1 1 29

28 · 1
3
√

2
0.511 MeV 0.511 MeV < 0.1%

Table 4: The charged fermion spectrum from the unified formula. Mean error: 1.0%. All predictions
use the same formula with parameters derived from Steane code structure. The finite-geometry factor
29/28 = 1 + 1/(𝑛(𝑑 + 1)) appears for generation-2 particles (Ramanujan cancellation) and for the electron
(scale anchor).

Nine masses spanning five orders of magnitude, predicted from a single formula with mean error 1.0%. The
inputs are:
• Code parameters: (𝑛, 𝑘, 𝑑) = (7, 1, 3)
• Heawood eigenvalues: 𝜆1 = 3, 𝜆2 =

√
2

• Particle assignments: generation (1, 2, or 3), type (up, down, or lepton), position (from Fano geometry)
No masses are fitted. The spectral corrections C follow from heat kernel evaluation on the Heawood

graph. The type offsets 𝛾 follow from stabilizer participation asymmetry. The generation structure follows
from the Fano plane partition.

40 NEUTRINOS

Charged fermions are stabilizer defects: they violate stabilizer constraints and can be detected by syndrome
measurement. Neutrinos require a different interpretation. The Steane code supports two classes of operation:
• Stabilizer errors anticommute with one or more stabilizers. They trigger syndromes and can be detected.

Charged fermions are stabilizer errors.
• Logical errors commute with all stabilizers. They affect the encoded logical qubit without triggering any

syndrome. Logical errors cannot be detected.
Neutrinos are logical errors. They do not violate stabilizer constraints and therefore do not couple to the
electromagnetic sector (X-stabilizer fluctuations) or the strong sector (Z-stabilizer structure). They couple
only to the weak sector, which involves the logical operators of the code. This interpretation explains the
mass hierarchy as follows. Stabilizer errors have an energy cost at tree level, set by 𝐽stab. Logical errors have
no direct cost; they commute with the vacuum Hamiltonian. Neutrino mass arises only through higher-order
processes involving virtual stabilizer fluctuations. This indirect coupling is suppressed by multiple powers of
the tunneling amplitude, placing neutrinos far below charged fermions in mass.
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40.1 THE NEUTRINO MASS SCALE

The 𝜋-ladder places the lightest neutrino at 𝑁𝜋,𝜈 = 60:

𝑚1 = 𝑀𝑃 × 𝜋−60 ≈ 0.008 eV. (176)

With normal hierarchy mass splittings:

𝑚1 ≈ 0.008 eV, (177)
𝑚2 ≈ 0.012 eV, (178)
𝑚3 ≈ 0.051 eV, (179)

Σ𝑚𝜈 ≈ 0.071 eV. (180)

This satisfies the cosmological bound Σ𝑚𝜈 < 0.12 eV from Planck.

40.2 MAJORANA STRUCTURE

The Steane code is self-dual: X and Z stabilizers have identical support patterns. This constrains neutral
fermion structure. For charged particles, the matter/antimatter distinction corresponds to the error type (X
versus Z). An electron is an X-sector defect; a positron is the corresponding Z-sector defect. The two are
physically distinct because CSS structure separates the sectors. For neutral particles, this distinction becomes
subtle. Neutrinos are logical errors, acted on by 𝑋̄ and 𝑍̄ . In a self-dual code, the transversal Hadamard
𝐻⊗𝑛 exchanges 𝑋̄ ↔ 𝑍̄ while preserving the code space. A neutrino state and its charge conjugate are
therefore related by a code symmetry rather than being independent states. This is the signature of Majorana
structure: the particle and antiparticle belong to the same irreducible representation of the symmetry group.
The effective Majorana mass for neutrinoless double beta decay:

𝑚𝛽𝛽 =

�����∑︁
𝑖

𝑈2
𝑒𝑖𝑚𝑖

����� ≈ 0.001–0.01 eV. (181)

This lies at the edge of next-generation experimental sensitivity.

41 HADRONS AND THE MESONIC QUANTUM

Leptons are elementary point defects. Hadrons are composite objects: their constituent quarks are point
defects, but confinement binds them into extended configurations connected by color flux tubes. Mesons
contain a quark-antiquark pair; baryons contain three quarks. The energy of these tubes sets the hadronic
mass scale.

41.1 THE DEPTH HIERARCHY

Meson masses are integer multiples of a mesonic quantum 𝑈. The integer coefficient reflects the depth of
vacuum structure probed by the quark content.

Local structure. Mesons built from first-generation quarks probe local link geometry. The pion spans two
lattice links. The rho adds syndrome structure.

Code block structure. Mesons containing strange quarks probe the full code block. The kaon samples all
𝑛 = 7 qubit positions. The eta and eta-prime involve logical degrees of freedom and anomaly corrections.

Spectral structure. Mesons containing charm quarks probe the eigenmode hierarchy. The spectral depth
𝑑3 = 27 counts syndrome patterns at depth 3 in the correction hierarchy.
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Automorphism structure. Mesons containing bottom quarks probe PSL(2,7) symmetry. The orientation-
preserving subgroup contributes |PSL(2, 7) |/2 = 84, reduced by syndrome screening.
Heavier quarks probe deeper vacuum structure. The meson mass hierarchy mirrors the quark mass hierarchy
through this depth correspondence.

41.2 THE MESONIC QUANTUM

The flux tube tension arises from maintaining coherent information flow. Each link preserves the code’s
channel capacity 𝛼−1. The energy cost per link is set by the electron mass. The product defines the mesonic
quantum.

𝑈 = 𝛼−1𝑚𝑒 = 137.036 × 0.511 MeV = 70.025 MeV. (182)

Hadron masses are integer combinations of𝑈.

41.3 THE QCD STRING TENSION

The flux tube connecting quark-antiquark pairs has a characteristic tension 𝜎. In lattice QCD,
√
𝜎 ≈ 440

MeV sets the confinement scale.
A color flux tube must close to form a color singlet. On the Fano plane, closing a color loop requires

traversing (𝑛 − 𝑘) = 6 links (the stabilizer qubit count). Each link costs energy𝑈. The flux tube samples the
full Cabibbo space of 𝑛𝑑 = 21 qubit-distance positions, enhanced relative to the 𝑛𝑑 − 𝑘 = 20 physical degrees:

√
𝜎 = (𝑛 − 𝑘) ×𝑈 × 𝑛𝑑

𝑛𝑑 − 𝑘 = 6 × 70 × 21
20

= 441 MeV. (183)

The experimental value is 440 ± 20 MeV. Agreement: 0.2%.
The string tension determines the asymptotic linear potential between quarks: 𝑉 (𝑟) ∼ 𝜎𝑟 at large

separation. This linear rise is the origin of confinement. In CCT, confinement is a consequence of the code’s
topological structure: separating color charges requires creating an extended defect whose energy grows
linearly with length.

41.4 MESON SPECTRUM

The pion spans two lattice links:
𝑚𝜋 = 2𝑈 = 140.05 MeV. (184)

Measured: 139.57 MeV. Error: 0.34%.
The kaon probes the full code block (𝑛 = 7 qubits):

𝑚𝐾 = 𝑛𝑈 = 490.2 MeV. (185)

Measured: 493.7 MeV. Error: 0.71%.
The rho meson adds hyperfine splitting from the syndrome space:

𝑚𝜌 = (2 + 𝑑2)𝑈 = 11𝑈 = 770.3 MeV. (186)

Measured: 775.3 MeV. Error: 0.64%.
The 𝜂 meson is a flavor singlet sampling all 𝑛 = 7 qubit positions plus the 𝑘 = 1 logical degree of freedom:

𝑚𝜂 = (𝑛 + 𝑘)𝑈 = 8𝑈 = 560 MeV. (187)

Measured: 548 MeV. Error: 2.2%.
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The 𝜂′ receives an anomaly contribution from the𝑈 (1)𝐴 sector. Two complete code traversals minus a
fractional logical correction give (2𝑛 − 𝑘/𝑑) = 14 − 1/3 = 13.67:

𝑚𝜂′ = (2𝑛 − 𝑘/𝑑)𝑈 = 957 MeV. (188)

Measured: 958 MeV. Error: 0.1%.
The 𝜙 meson is an 𝑠𝑠 state probing the strange quark sector. The base coefficient 2𝑛 = 14 is enhanced by

the Cabibbo factor (𝑛𝑑)/(𝑛𝑑 − 𝑘) = 21/20:

𝑚𝜙 = 2𝑛 ×𝑈 × 𝑛𝑑

𝑛𝑑 − 𝑘 = 14 × 70 × 21
20

= 1029 MeV. (189)

Measured: 1019 MeV. Error: 1%.
The 𝐷 meson contains a charm quark at spectral depth 𝑑3 = 27 in the Heawood eigenmode hierarchy:

𝑚𝐷 = 𝑑3𝑈 = 27𝑈 = 1891 MeV. (190)

Measured: 1869 MeV. Error: 1.2%.
The 𝐷𝑠 adds one logical unit for the strange quark:

𝑚𝐷𝑠
= (𝑑3 + 𝑘)𝑈 = 28𝑈 = 1961 MeV. (191)

Measured: 1968 MeV. Error: 0.4%.
The 𝐽/𝜓 is a charm-anticharm bound state where both quarks contribute and the binding involves all code

degrees of freedom. The factor 4 counts the spin configurations: each quark has spin 1/2, and the vector
meson has 𝑆 = 1, selecting 4 of the (2 × 2) × 1 spin-color channels:

𝑚𝐽/𝜓 = 4(𝑛 + 𝑑 + 𝑘)𝑈 = 44𝑈 = 3081 MeV. (192)

Measured: 3097 MeV. Error: 0.5%.
The 𝐵 meson contains a bottom quark. The automorphism group contributes half its order, reduced by

the syndrome space:

𝑚𝐵 = ( |PSL(2, 7) |/2 − 𝑑2)𝑈 = (84 − 9)𝑈 = 75𝑈 = 5252 MeV. (193)

Measured: 5279 MeV. Error: 0.5%.
The Υ(1𝑆) is a bottom-antibottom bound state. The spectral depth 𝑑3 = 27 (which also appears in the 𝐷

meson) combines with the generation factor (𝑛 − 𝑘 + 1) = 7:

𝑚Υ = 𝑑3(𝑛 − 𝑘 + 1)𝑈 = 27 × 7 ×𝑈 = 189𝑈 = 9453 MeV. (194)

Measured: 9460 MeV. Error: 0.07%.

Meson Formula Predicted Measured Error

𝜋 2𝑈 140 MeV 140 MeV 0.3%
𝐾 𝑛𝑈 490 MeV 494 MeV 0.7%
𝜌 (2 + 𝑑2)𝑈 770 MeV 775 MeV 0.6%
𝜂 (𝑛 + 𝑘)𝑈 560 MeV 548 MeV 2.2%
𝜂′ (2𝑛 − 𝑘/𝑑)𝑈 957 MeV 958 MeV 0.1%
𝐷 𝑑3𝑈 1891 MeV 1869 MeV 1.2%
𝐷𝑠 (𝑑3 + 𝑘)𝑈 1961 MeV 1968 MeV 0.4%
𝐽/𝜓 4(𝑛 + 𝑑 + 𝑘)𝑈 3081 MeV 3097 MeV 0.5%
𝐵 (84 − 𝑑2)𝑈 5252 MeV 5279 MeV 0.5%
Υ 𝑑3(𝑛 − 𝑘 + 1)𝑈 9453 MeV 9460 MeV 0.07%

Table 5: Meson spectrum from the mesonic quantum𝑈 = 𝛼−1𝑚𝑒 = 70.025 MeV. Mean error: 0.7%.
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41.5 EXOTIC HADRONS

The mesonic quantum𝑈 = 70.025 MeV extends to exotic states: tetraquarks (𝑞𝑞𝑞𝑞) and pentaquarks (𝑞𝑞𝑞𝑞𝑞)
discovered since 2003. Exotic hadrons near meson-meson thresholds are molecular states bound by pion
exchange. The binding energy takes the form𝑈/(𝑛 · 𝑓 ) where 𝑓 is a geometric factor counting the binding
channels.

State Formula Predicted Measured Error

𝑋 (3872) 𝑚𝐷 + 𝑚𝐷∗ −𝑈/(𝑛(𝑛 + 𝑑)) 3875 MeV 3872 MeV 0.09%
𝑇𝑐𝑐 (3875) 𝑚𝐷 + 𝑚𝐷∗ −𝑈/(𝑛𝑑) 3873 MeV 3875 MeV 0.05%
𝑍𝑐 (3900) 𝑚𝐽/𝜓 + 𝑚𝜌 +𝑈/𝑛 3882 MeV 3887 MeV 0.1%
𝑍𝑐 (4020) 𝑚𝑍𝑐 (3900) + 2𝑈 4022 MeV 4024 MeV 0.05%
𝑃𝑐 (4312) 𝑚Σ𝑐

+ 𝑚𝐷 −𝑈/𝑑2 4311 MeV 4312 MeV 0.02%
𝑃𝑐 (4440) 𝑚Σ𝑐

+ 𝑚𝐷∗ −𝑈/(𝑛 − 𝑘) 4449 MeV 4440 MeV 0.2%
𝑃𝑐 (4457) 𝑚Σ𝑐

+ 𝑚𝐷∗ −𝑈/(𝑛 + 𝑘) 4452 MeV 4457 MeV 0.1%
𝑋 (6900) 2𝑚𝐽/𝜓 + (𝑛 + 𝑑)𝑈 6894 MeV 6905 MeV 0.2%

Table 6: Exotic hadron spectrum. Mean error: 0.1%. The 𝑋 (3872) (Belle, 2003), 𝑍𝑐 states (BESIII, 2013),
𝑃𝑐 pentaquarks (LHCb, 2019), 𝑇𝑐𝑐 (LHCb, 2021), and 𝑋 (6900) all-charm tetraquark (LHCb, 2020) follow
the same code-parameter structure as conventional hadrons.

The binding energies𝑈/𝑑2,𝑈/(𝑛 − 𝑘), and𝑈/(𝑛 + 𝑘) appearing in the pentaquark formulas are the same
factors that determine nuclear binding and meson mass splittings. The exotic hadron spectrum provides eight
additional tests on particles discovered after the framework was formulated.

41.6 BARYON SPECTRUM

Baryons are three-quark bound states sampling the Fano triangle structure. Each baryon mass reflects which
Fano lines the constituent quarks occupy. The Δ(1232) resonance contains three quarks of the same flavor in
a spin-3/2 configuration. The quarks span 𝑑 = 3 lines with (𝑛 − 𝑘) = 6 available color assignments:

𝑚Δ = 𝑑 (𝑛 − 𝑘)𝑈 = 18𝑈 = 1260 MeV. (195)

Measured: 1232 MeV. Error: 2.3%.
The Σ baryon contains one strange quark. The configuration spans two code blocks (2𝑛 = 14) plus

syndrome depth (𝑑 = 3):
𝑚Σ = (2𝑛 + 𝑑)𝑈 = 17𝑈 = 1190 MeV. (196)

Measured: 1192 MeV. Error: 0.17%.
The Ξ baryon contains two strange quarks. The formula adds one unit to the Δ structure:

𝑚Ξ = (𝑑 (𝑛 − 𝑘) + 1)𝑈 = 19𝑈 = 1330 MeV. (197)

Measured: 1315 MeV. Error: 1.1%.
The Ω− baryon contains three strange quarks, one on each color line. The quarks span 𝑑 = 3 lines with

(𝑛 + 𝑘) = 8 total code degrees of freedom:

𝑚Ω− = 𝑑 (𝑛 + 𝑘)𝑈 = 24𝑈 = 1681 MeV. (198)

Measured: 1672 MeV. Error: 0.54%.
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41.7 NUCLEAR BINDING

Nuclear binding energies follow from the mesonic quantum𝑈 divided by code structure factors that count
how many degrees of freedom share the binding energy.

The deuteron (2H) is the simplest bound nucleus with 𝐴 = 2 nucleons. The binding distributes across the
𝑑 (𝑛 + 𝑑 + 𝑘) = 33 channels that encode the full code footprint at distance depth. The Cabibbo enhancement
(𝑛𝑑)/(𝑛𝑑 − 𝑘) = 21/20 accounts for the full qubit-distance space:

𝐵𝑑 =
𝑈

𝑑 (𝑛 + 𝑑 + 𝑘) ×
𝑛𝑑

𝑛𝑑 − 𝑘 =
70
33

× 21
20

= 2.23 MeV. (199)

Measured: 2.224 MeV. Error: 0.3%.
The 3He nucleus has 𝐴 = 3 nucleons. The correctable error capacity (𝑑 − 𝑘) = 2 provides binding,

distributed across the 𝑑 (𝑛 − 𝑘) = 18 syndrome-stabilizer channels that a three-body state probes:

𝐵(3He) = (𝑑 − 𝑘)𝑈
𝑑 (𝑛 − 𝑘) =

2 × 70
18

= 7.78 MeV. (200)

Measured: 7.72 MeV. Error: 0.8%.
The 4He nucleus (alpha particle) has 𝐴 = 4 nucleons, matching the total code capacity (𝑑 + 𝑘) = 4. As a

closed shell, it binds through geometric saturation rather than gauge exchange. The binding distributes across
the geometric dimension (𝑛 + 𝑑) = 10:

𝐵(4He) = (𝑑 + 𝑘)𝑈
𝑛 + 𝑑 =

4 × 70
10

= 28.0 MeV. (201)

Measured: 28.3 MeV. Error: 1.1%.
The 7Li nucleus has 𝐴 = 𝑛 = 7 nucleons, matching the code’s qubit count. The (𝑛 − 𝑑) = 4 excess qubits

beyond the distance provide binding:

𝐵(7Li) = (𝑛 − 𝑑)𝑈
𝑛

=
4 × 70

7
= 40.0 MeV. (202)

Measured: 39.2 MeV. Error: 2.0%.
The 12C nucleus has 𝐴 = 12 nucleons. The syndrome space 𝑑2 = 9 determines how binding distributes

across the 12-body system:
𝐵(12C) = 12𝑈

𝑑2 =
12 × 70

9
= 93.3 MeV. (203)

Measured: 92.2 MeV. Error: 1.2%.
Peak binding per nucleon occurs at iron-56. The total code capacity (𝑛 + 𝑘) = 8 sets the saturation scale:

𝐵

𝐴

����
Fe-56

=
𝑈

𝑛 + 𝑘 =
70.025

8
= 8.75 MeV. (204)

Measured: 8.79 MeV. Error: 0.5%. This is the maximum because (𝑛 + 𝑘) is the minimum divisor that
accounts for both physical and logical degrees of freedom.

The Hoyle state in 12C is the resonance enabling triple-alpha nucleosynthesis. Its energy above the ground
state equals the mesonic quantum divided by the syndrome space:

𝐸Hoyle =
𝑈

𝑑2 =
70
9

= 7.78 MeV. (205)
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Measured: 7.65 MeV. Error: 1.7%. The same 𝑑2 = 9 factor that determines 12C binding also sets the Hoyle
resonance position.

Observable Formula Predicted Measured Error

𝐵𝑑 (deuteron) 𝑈
33 · 21

20 2.23 MeV 2.224 MeV 0.3%
𝐵(3He) (𝑑 − 𝑘)𝑈/(𝑑 (𝑛 − 𝑘)) 7.78 MeV 7.72 MeV 0.8%
𝐵(4He) (𝑑 + 𝑘)𝑈/(𝑛 + 𝑑) 28.0 MeV 28.3 MeV 1.1%
𝐵(7Li) (𝑛 − 𝑑)𝑈/𝑛 40.0 MeV 39.2 MeV 2.0%
𝐵(12C) 12𝑈/𝑑2 93.3 MeV 92.2 MeV 1.2%
(𝐵/𝐴)Fe 𝑈/(𝑛 + 𝑘) 8.75 MeV 8.79 MeV 0.5%
𝐸Hoyle 𝑈/𝑑2 7.78 MeV 7.65 MeV 1.7%

Table 7: Nuclear binding energies from the mesonic quantum𝑈 = 70.025 MeV. Mean error: 1.2%.

42 THE PROTON MASS

The proton-to-electron mass ratio was derived in Section 4 from group-theoretic counting:

𝑚𝑝

𝑚𝑒
= 168(𝑛 + 𝑑 + 𝑘) − 2(𝑛 − 𝑘) = 1836. (206)

The proton visits all 168 configurations of PSL(2,7) through color averaging, sampling the full code footprint
at each. A single fermion samples one configuration. The ratio measures how much more vacuum structure
the proton engages. This section examines the proton’s internal structure observables, which probe the same
PSL(2,7) geometry.

42.1 STRUCTURE OBSERVABLES

The proton charge radius:
𝑟𝑝 =

𝑑

10
× 𝑟𝑒 = 0.3 × 2.818 fm = 0.845 fm. (207)

Muonic measurement: 0.8414 ± 0.0019 fm. Error: 0.4%.
The proton anomalous magnetic moment:

𝜅𝑝 =
𝑑2

𝑛 − 𝑑 + 1
=

9
5
= 1.800. (208)

Measured: 1.7928. Error: 0.4%.
The neutron anomalous magnetic moment:

𝜅𝑛 = −𝑑
3

2𝑛
= −27

14
= −1.929. (209)

Measured: −1.9130. Error: 0.8%.
The magnetic moment ratio:

𝜇𝑝

𝜇𝑛
=

1 + 𝜅𝑝
𝜅𝑛

= −196
135

= −1.452. (210)

Measured: −1.460. Error: 0.5%.
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43 MIXING ANGLES FROM DEFECT GEOMETRY

Masses fix eigenvalues. Weak interactions probe eigenvectors. Mixing angles measure how the mass basis
differs from the weak basis.

43.1 QUARK MIXING: THE CABIBBO ANGLE

Quarks are point defects at Fano vertices. Any two distinct points share exactly one common line. The
number of point pairs is

(𝑛
2
)
=

(7
2
)
= 21, which equals the total incidence count 𝑛 × 𝑑 = 21: each of 7 points

lies on 3 lines. The identity
(𝑛
2
)
= 𝑛𝑑 is specific to the Fano plane and encodes the tight coupling between

points and lines.
The mixing amplitude is the inverse square root of the pair count:

sin 𝜃𝐶 =
1

√
𝑛𝑑

=
1

√
21

= 0.218. (211)

Measured: 0.225. Error: 3.1%.

43.2 GENERATION-SKIPPING TRANSITIONS

Transitions between adjacent generations (1 ↔ 2 or 2 ↔ 3) require traversing one layer of the stabilizer
sector. The (𝑛 − 𝑘) = 6 stabilizer qubits act as intermediate states. The weak interaction accesses the full
logical structure of the code, so the transition amplitude involves the logical capacity ratio (𝑛 + 𝑘)/𝑛:

|𝑉𝑐𝑏 | =
sin 𝜃𝐶
𝑛 − 𝑘 × 𝑛 + 𝑘

𝑛
=

1
6
√

21
× 8

7
= 0.0416. (212)

Measured: 0.0410. Error: 1.5%.
Reaching generation 3 from generation 1 requires traversing stabilizer and reach sectors. CKM elements

are amplitudes, so the logical capacity factor enters at amplitude level:

|𝑉𝑢𝑏 | =
sin 𝜃𝐶

(𝑛 − 𝑘) (𝑛 + 𝑑) ×
√︂
𝑛 + 𝑘
𝑛

=
1

60
√

21
×

√︂
8
7
= 0.00389. (213)

Measured: 0.00382. Error: 1.8%.
The element |𝑉𝑡𝑠 | connects third and second generations through the same amplitude-level coupling:

|𝑉𝑡𝑠 | =
sin 𝜃𝐶
𝑛 − 𝑘 ×

√︂
𝑛 + 𝑘
𝑛

=
1

6
√

21
×

√︂
8
7
= 0.0389. (214)

Measured: 0.0388. Error: 0.3%.
The quark mixing angle 𝜃CKM

23 receives syndrome enhancement. In the lepton sector, atmospheric mixing
is suppressed by 𝑑2/(𝑑2 + 1) = 9/10. In the quark sector, the syndrome factor acts inversely:

sin 𝜃CKM
23 =

1
6
√

21
× 𝑑2 + 1

𝑑2 =
1

6
√

21
× 10

9
= 0.0404. (215)

Measured: 0.0408. Error: 1%.
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43.3 THE CKM MATRIX

Element Formula Predicted Measured Error

|𝑉𝑢𝑑 |
√︁

20/21 0.976 0.974 0.2%
|𝑉𝑢𝑠 | 1/

√
21 0.218 0.225 3.1%

|𝑉𝑢𝑏 |
√︁

8/7/(60
√

21) 0.00389 0.00382 1.8%
|𝑉𝑐𝑑 | 1/

√
21 0.218 0.221 1.4%

|𝑉𝑐𝑠 |
√︁

20/21 0.976 0.987 1.1%
|𝑉𝑐𝑏 | (8/7)/(6

√
21) 0.0416 0.0410 1.5%

|𝑉𝑡𝑑 | 16/(420
√

21) 0.0083 0.0080 3.7%
|𝑉𝑡𝑠 |

√︁
8/7/(6

√
21) 0.0389 0.0388 0.3%

sin 𝜃CKM
23 (10/9)/(6

√
21) 0.0404 0.0408 1%

|𝑉𝑡𝑏 | ∼ 1 ∼ 1 1.013 ∼1%

43.4 THE CP PHASE

The CKM matrix contains one irreducible phase generating CP violation:

𝛿 = arccos
(
𝑑

𝑛

)
= arccos

(
3
7

)
= 64.6◦. (216)

Measured: 65◦ ± 2◦. The prediction lies within measurement uncertainty.

43.5 LEPTON MIXING: THE PMNS MATRIX

Leptons are line defects extended along Fano lines. Their overlap is enhanced by geometric extension.
Solar angle:

sin2 𝜃12 =
𝑑

𝑛 + 𝑑 =
3

10
= 0.30. (217)

Measured: 0.304. Error: 1.3%.
Atmospheric angle:

sin2 𝜃23 =
1
2
× 𝑑2

𝑑2 + 1
=

1
2
× 9

10
=

9
20

= 0.450. (218)

Each pair of X-stabilizers shares exactly 2 of their 4 qubits, giving a base mixing of 1/2. The syndrome
space has dimension 𝑑2 = 9 nontrivial single-qubit error patterns. Including the trivial syndrome, there are
𝑑2 + 1 = 10 distinguishable configurations. Neutrinos propagating through the vacuum sample the nontrivial
syndromes, giving the correction factor 𝑑2/(𝑑2 + 1) = 9/10. Measured: 0.449. Error: 0.2%.

Reactor angle:

sin2 𝜃13 =
1
𝑛2 ×

√︂
𝑛 + 𝑘
𝑛

=
1
49

×
√︂

8
7
= 0.0218. (219)

Each generation step contributes 1/𝑛, and two steps are required. The weak process accesses the logical
sector at amplitude level, giving the square root enhancement. Measured: 0.0218. Error: < 0.5%.

43.6 THE LEPTONIC CP PHASE

The PMNS matrix contains one irreducible phase generating leptonic CP violation. For quarks, the phase
arises from point-defect geometry: 𝛿𝐶𝐾𝑀 = arccos(𝑑/𝑛). Leptons are line defects, related to quarks by CSS
duality (Hadamard conjugation 𝐻⊗𝑛 exchanges X and Z sectors).
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Under CSS duality, the CP phase shifts by 𝜋:

𝛿𝑃𝑀𝑁𝑆 = 𝜋 + arccos
(
𝑑

𝑛

)
= 𝜋 + 64.6 = 244.6. (220)

Equivalently, in the convention where 𝛿 ∈ [−𝜋, 𝜋]: 𝛿𝑃𝑀𝑁𝑆 = −115.4.
Current experimental status: T2K and NOvA data prefer 𝛿𝑃𝑀𝑁𝑆 ≈ 200± 40 (or equivalently −160), with

significant uncertainty. The CCT prediction lies within 1𝜎 of current measurements.
DUNE and Hyper-Kamiokande will measure 𝛿𝑃𝑀𝑁𝑆 to ±10 precision. A confirmed value outside the

range 230–260 (or equivalently −130 to −100) would require revision of the duality relationship.

44 PRECISION CORRECTIONS TO MASS RATIOS

Section 4 derived the leading-order lepton mass ratios from code structure: 𝑚𝜇/𝑚𝑒 = (𝑑𝛼−1 + 2𝑘)/2,
𝑚𝜏/𝑚𝜇 = (𝑛2 + 1)/𝑑, and the Koide parameter 𝑄 = 2/𝑑. These formulas achieve errors at the 0.1% to 1%
level. Small structural corrections reduce the errors further.

44.1 PRECISION CORRECTIONS

Small structural corrections improve the base formulas:

Proton-electron ratio.

𝑚𝑝

𝑚𝑒
= 168(𝑛 + 𝑑 + 𝑘) − 2(𝑛 − 𝑘) + 𝑘

𝑛
+ 𝑘

𝑛(𝑛 + 𝑑 + 𝑘) = 1836.156. (221)

Measured: 1836.153. Error: 2 ppm.

Muon-electron ratio.
𝑚𝜇

𝑚𝑒
=
𝑑𝛼−1 + 2𝑘

2
+ 𝑑

𝑛 + 𝑑 + 𝑘 = 206.773. (222)

Measured: 206.768. Error: 24 ppm.

Tau-muon ratio.
𝑚𝜏

𝑚𝜇
=
𝑛2 + 1
𝑑

+ 𝑘

𝑛
= 16.81. (223)

Measured: 16.817. Error: 0.04%.

45 SUMMARY

The mass hierarchy spanning twelve orders of magnitude emerges from a single mechanism: mass is the cost
of maintaining chiral coherence on an actively corrected vacuum code. Four layers of structure build the
complete spectrum:
1. Mechanism: Chiral transport is localized by vacuum defects. Mass equals inverse localization length.
2. Absolute scale: The 𝜋-ladder descends from the Planck mass through recovery depth. The electron

occupies rung 45, selected by the code fraction 𝑑/(𝑛 + 𝑘) = 3/8.
3. Structural ratios: Dimensionless mass ratios follow from code arithmetic without spectral corrections.

The proton-electron ratio 168 × 11 − 12 = 1836 achieves 0.008% accuracy using only integers.
4. Spectral weights: Heawood propagation through the Fano incidence graph fixes corrections for absolute

masses. Type offsets follow from stabilizer asymmetry.
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The unified formula 𝑚 = 𝑣 × 𝜀𝛼𝑏+𝛽 (4−gen)+𝛾 × C predicts all nine charged fermion masses with mean error
1.0%. No parameters are fitted. The spectral corrections C are computed from heat kernel evaluation on
the Heawood graph, including sector-dependent Ramanujan corrections for generations 1 and 3, and the
finite-geometry factor 29/28 for generation 2 and the electron. The type offsets 𝛾 are computed from stabilizer
participation asymmetry. The same code parameters (𝑛, 𝑘, 𝑑) = (7, 1, 3) and group order |PSL(2, 7) | = 168
determine:
• The Higgs VEV: 𝑣 = 𝑀𝑃𝜋

−33.6 × 1.024 = 247 GeV
• The proton-electron ratio: 168 × 11 − 12 = 1836
• The Cabibbo angle: 1/

√
21

• The solar mixing angle: 3/10
• The muon-electron ratio: (3 × 137 + 2)/2 = 206.5
• The Koide relation: 𝑄 = 2/3
The mesonic quantum𝑈 = 𝛼−1𝑚𝑒 = 70 MeV organizes the entire hadron spectrum, with meson and baryon
masses appearing as integer combinations of𝑈 built from the same code parameters.

Parameter Formula Value

Generation suppression 1/𝑛 0.143
Generation step 𝑛stab/𝑑 2
Electron rung 𝑁𝜋,𝑒 45
Neutrino rung 𝑁𝜋,𝜈 60
Cabibbo parameter 1/

√
𝑛𝑑 0.218

Solar angle 𝑑/(𝑛 + 𝑑) 0.30
Atmospheric angle 1

2 · 𝑑2

𝑑2+1 0.45

Reactor angle 1
𝑛2

√︃
𝑛+𝑘
𝑛

0.022
Koide parameter 2/𝑑 0.667

Table 8: Mass and mixing parameters from Steane code primitives.
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Part IX: Spacetime and Cosmology
46 THE HOLOGRAPHIC VACUUM

The Steane code encodes one logical qubit into seven physical qubits. In the tessellated vacuum, each
cell contributes one protected bulk degree of freedom, while the stabilizers govern local error correction.
This boundary-bulk structure mirrors holographic duality: information about the interior is encoded on
the boundary. For a region of linear size 𝐿, the boundary scales as 𝐿𝑑−1 while the bulk scales as 𝐿𝑑 .
The correction capacity per unit volume falls as 1/𝐿. This scaling determines vacuum energy, horizon
structure, and gravitational dynamics. Finite correction capacity manifests in three regimes. At horizon
scale, the error rate exceeds correction capacity and geometry fails; this defines black holes. At intermediate
scales, throughput optimization across the lattice produces curvature; this is gravity. At cosmological scale,
boundary-limited correction generates thermodynamic exhaust; this is dark energy. The same constraint
operates at all scales. What changes is the coarse-graining depth. Horizons mark local code failure. Curvature
encodes the vacuum’s load-balancing response. Dark energy is the global cost of maintaining coherence
against the horizon boundary. The statements that follow trace this single constraint from Planck scale to
Hubble scale.

47 THE HORIZON REGIME

The error-correcting vacuum has a stability limit. When the bulk error rate exceeds the code’s correction
capacity, coherent geometry fails. This failure defines horizons.

47.1 THE ERROR THRESHOLD

For a stabilizer code with distance 𝑑, errors can be corrected if the error rate 𝑝err is below a threshold 𝑝𝑐.
Above this threshold, errors accumulate faster than they can be corrected and logical information is lost. In
the vacuum context, losing logical information means losing the coherent structure that defines spacetime
geometry. Regions where 𝑝err > 𝑝𝑐 exhibit geometric breakdown: the stabilizer constraints that enforce
locality and causality are violated, and the effective metric becomes undefined.

47.2 HORIZONS AS CORRECTION BOUNDARIES

The critical failure mode occurs when the boundary has finite correction reach. If boundary sites can only
correct errors within radius 𝑅, the deep bulk becomes inaccessible to error correction. A shell-like surviving
region emerges: the outer shell, within distance 𝑅 of the boundary, remains corrected and coherent; the deep
bulk, beyond the reach of boundary corrections, decoheres and loses geometric structure. The transition
between these regions is sharp. This provides a discrete model for horizons. The horizon represents the edge
of the region maintainable by the boundary error-correction machinery. Inside the horizon, the vacuum code
has failed. Outside, it continues to operate.

47.3 BLACK HOLES AS CODE FAILURE

A black hole interior is a region where the error rate exceeds the correction threshold. The singularity is a
region of complete code failure where coherent geometry cannot be defined because stabilizer constraints are
maximally violated. The horizon protects the exterior by preventing uncorrectable errors from propagating
outward. Information falling into the black hole becomes inaccessible, encoded in correlations at the horizon
boundary, consistent with the holographic principle.
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47.4 THE SCHWARZSCHILD COEFFICIENT

The Schwarzschild radius is 𝑅𝑠 = 2𝐺𝑀/𝑐2. The factor of 2 arises from the error-correction structure of the
vacuum code. The Steane code protects 𝑘 = 1 logical qubit with distance 𝑑 = 3. The code can tolerate up to
(𝑑 − 1) = 2 qubit errors before the logical information is at risk. The protection ratio is:

𝜌 =
𝑘

𝑑 − 1
=

1
2
. (224)

This measures how efficiently the code protects logical information: one logical qubit per two error slots. A
black hole forms when the matter density exceeds the vacuum code’s capacity to maintain coherence. The
critical condition is:

compactness =
𝐺𝑀

𝑐2𝑅
= 𝜌 =

1
2
. (225)

Solving for 𝑅 yields the Schwarzschild radius with coefficient 1/𝜌 = (𝑑 − 1)/𝑘 = 2. Beyond the horizon, the
error rate exceeds (𝑑 − 1)/𝑘 errors per logical qubit. The code fails. Coherent geometry cannot be maintained.

47.5 THE BEKENSTEIN-HAWKING ENTROPY

The Bekenstein-Hawking entropy is 𝑆𝐵𝐻 = 𝐴/(4ℓ2
𝑃
). The factor of 1/4 arises from the information structure

of the code. Each Planck-area cell on the horizon is a Steane code block with total degrees of freedom: 𝑛 = 7
physical qubits (bulk, inaccessible from exterior), 𝑑 = 3 syndrome bits (boundary, accessible), and 2 logical
operators (gauge freedom). The externally measurable entropy is the syndrome information:

𝑆 =
𝐴

ℓ2
𝑃

× 𝑑

𝑛 + 𝑑 + 2
=
𝐴

ℓ2
𝑃

× 3
12

=
𝐴

4ℓ2
𝑃

. (226)

The factor 1/4 is a code-theoretic necessity: only 𝑑 of the (𝑛 + 𝑑 + 2) degrees of freedom per cell are
measurable at the boundary. The rest are either in the bulk (𝑛) or pure gauge (2). The universe reserves 3/4 of
its degrees of freedom for bulk physics and gauge structure.

47.6 HAWKING RADIATION

Horizon-scale error correction has a thermodynamic cost. The vacuum performs error correction at the
horizon, and that correction dissipates heat. At the black hole horizon, the exterior vacuum actively defends
against the disordered interior. The boundary between order and chaos is where error-correction activity is
maximal. By Landauer’s principle, each corrected error dissipates heat at the horizon temperature:

𝑇BH =
ℏ𝑐3

8𝜋𝐺𝑀𝑘𝐵
. (227)

The error-correction exhaust radiates outward at this temperature. This is Hawking radiation: thermal exhaust
from horizon-scale recovery. The outgoing flux is the Landauer heat of information erasure carried away as
radiation.

48 THE CURVATURE REGIME

Gravity emerges from the optimal distribution of processing load across the vacuum code. This perspective
has precedent in the thermodynamic approach to gravity: Jacobson (1995) showed that Einstein’s field
equations follow from the Clausius relation applied to local Rindler horizons, and Verlinde (2011) proposed
that gravity is an entropic force arising from information gradients. The present framework provides a
concrete computational substrate for these thermodynamic arguments.
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48.1 METRIC AS INFORMATION LATENCY

Consider a lattice where each site processes information at rate Φ(𝑥). This processing rate determines how
quickly signals propagate through the medium. In the continuum limit, the information distance induces a
metric:

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 , (228)

where 𝑔𝜇𝜈 encodes the effective latency of the medium. The time-time component measures the local clock
rate: √︁

−𝑔00(𝑥) ∝ Φ(𝑥). (229)
Regions with slower processing have smaller √−𝑔00 and hence deeper gravitational potentials. Time dilation
is the manifestation of reduced processing speed. A clock in a gravitational well runs slow because the
vacuum there is processing information more slowly.

48.2 MATTER AS COMPUTATIONAL LOAD

Matter consists of stabilizer defects that require active maintenance. This servicing consumes throughput. A
vacuum region requires no extra operations beyond the baseline error-correction cycle. A region containing a
massive defect requires additional operations per unit time, determined by the defect’s stabilizer coupling. To
service this load while maintaining causal consistency across the lattice, the vacuum must locally slow its
evolution rate, lowering Φ(𝑥) in the vicinity of the defect. This slowdown is a necessity for maintaining code
stability. If the vacuum tried to maintain high processing speed near a massive defect, it would outpace its
ability to correct errors, leading to code failure. The stable configuration is one where processing speed drops
to accommodate the load. This drop in processing speed is what we observe as gravitational time dilation.
Mass curves spacetime because mass requires computation, and computation takes time.

48.3 THE THROUGHPUT ACTION

The vacuum arranges its evolution to maximize total useful information processed, subject to locality and
stability constraints. A utility term favors large Φ(𝑥) (high processing speed), while a synchronization cost
penalizes large gradients ∇Φ (to maintain consistency between neighboring sites). For a stabilizer code,
the entanglement entropy 𝑆 of a region scales with the number of bond cuts at the boundary, satisfying an
area law 𝑆 ∝ 𝐴. Jacobson (1995) demonstrated that for any system obeying an area law and the Clausius
relation 𝛿𝑄 = 𝑇𝑑𝑆, the energy flux through local Rindler horizons implies the Einstein field equations.
By establishing that the vacuum is a holographic stabilizer code, we satisfy the area-law prerequisite of
Jacobson’s theorem. The continuous limit of the synchronization cost leads to the Ricci scalar curvature 𝑅.
The continuum throughput action is:

𝑆throughput =

∫
𝑑4𝑥

√−𝑔 (𝑅 − Lmatter) , (230)

where Lmatter encodes the throughput consumed by matter. This is the Einstein-Hilbert action. Varying with
respect to the metric recovers the Einstein field equations:

𝐺𝜇𝜈 = 8𝜋𝐺N 𝑇𝜇𝜈 . (231)

Newton’s constant 𝐺N measures the inverse stiffness of the vacuum:

𝐺N ∝ 1
𝐽stab

, (232)

where 𝐽stab is the stabilizer coupling strength. A stiff vacuum (large 𝐽stab) has small 𝐺N and resists curvature.
A soft vacuum has large 𝐺N and yields easily to matter. In Planck units, 𝐽stab ∼ 𝑀2

𝑃
, giving 𝐺N ∼ 1/𝑀2

𝑃
as

observed.
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49 DARK MATTER FROM STIFFNESS GRADIENTS

Standard cosmology requires invisible mass halos to explain flat galactic rotation curves. The framework
interprets dark matter effects as spatial variation in vacuum stiffness rather than particulate matter.

49.1 THE STIFFNESS-GRAVITY RELATION

Newton’s constant was identified as the inverse stiffness of the vacuum: 𝐺N ∝ 1/𝐽stab. If stiffness varies in
space, the effective gravitational constant varies with it:

𝐺N,eff (𝑥) ∝
1

𝐽stab(𝑥)
. (233)

This differs from modified gravity theories: the fundamental dynamical laws remain unchanged. But if the
vacuum has different stiffness in different regions, observers will measure different effective gravitational
strengths depending on where they make their measurements.

49.2 THE DECOHERENCE MECHANISM

Why would vacuum stiffness vary? Stiffness correlates with information density. Regions of high information
density, where many stabilizers are actively constrained by matter interactions, remain coherent: the error-
correction machinery is fully engaged, and the vacuum is stiff. Regions of low information density, far
from matter, experience less error-correction activity. Over time, such regions decohere slightly, softening
the vacuum. Galactic centers are dense with matter; the vacuum there is continually exercised by particle
interactions, keeping it coherent and stiff. The galactic outskirts contain less matter; the vacuum there is
quieter and gradually relaxes. This creates a natural radial gradient in stiffness:

𝐽stab(𝑟) ≈
𝐽stab,0

1 + 𝑟/𝑅𝑐
, (234)

giving an effective gravitational constant that increases with radius:

𝐺N,eff (𝑟) ≈ 𝐺N,0

(
1 + 𝑟

𝑅𝑐

)
, (235)

where 𝑅𝑐 is a characteristic coherence length set by the competition between matter-induced stiffness and
vacuum decoherence.

49.3 ROTATION CURVES

The rotation velocity of a star at radius 𝑟 satisfies 𝑣(𝑟)2 = 𝐺N,eff (𝑟)𝑀 (𝑟)/𝑟. With constant 𝐺N, this gives
Keplerian falloff 𝑣 ∝ 1/

√
𝑟 outside the luminous disk. The stiffness gradient resolves this through holographic

sourcing. The stiffness source of a 2D galactic disk is constrained by its 1D holographic boundary (the rim).
For a disk of mass 𝑀 and radius 𝑅 ∝

√
𝑀, the rim capacity scales as 𝜎 ∝ 𝑅 ∝

√
𝑀. Combined with 3D

stiffness diffusion (𝐽stab ∝ 𝜎/𝑟), this yields an effective gravitational coupling 𝐺N,eff ∝ 𝑟/
√
𝑀 . The resulting

acceleration 𝑎 = 𝐺N,eff𝑀/𝑟2 ∝
√
𝑀/𝑟 naturally recovers the Tully-Fisher relation 𝑣2 ∝

√
𝑀 (equivalently

𝑀 ∝ 𝑣4) as a geometric consequence of boundary-limited capacity.

49.4 THE BULLET CLUSTER

A major challenge for non-particulate dark matter models is the Bullet Cluster, where the gravitational
potential inferred from lensing follows the collisionless stars rather than the dominant gas component. The
framework explains this through collisional decoherence: collisions between gas particles produce entropy that
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degrades vacuum coherence, suppressing the gravitational contribution of collisional matter. The decoherence
coefficient is determined by the code structure. Each collision scatters a stabilizer defect among 𝑛/𝑘 = 7
distinguishable syndrome positions, producing entropy Δ𝑆 = 𝑘𝐵 ln 7. The code can absorb this across 𝑑 = 3
correction layers. The structural coefficient 𝛽 = ln(𝑛/𝑘)/𝑑 = ln 7/3 = 0.649 measures the bits scrambled per
correction layer. Collisionless stars maintain full gravitational contribution (C = 1). Shock-heated gas, with
high thermal velocity and collision rate, suffers coherence suppression (C ≪ 1). The gravitational potential
tracks the coherent component. Weak lensing observations confirm that the mass peaks coincide with the
galaxies rather than the X-ray emitting gas, as the framework predicts.

49.5 GRAVITATIONAL LENSING

Since the stiffness gradient modifies the metric itself (𝑔00 ∝ Φ ∝ 𝐽), it universally affects all geodesics,
including photons. Light bends according to the effective potential. The “missing mass” inferred from
dynamical measurements (rotation curves) matches the “missing mass” inferred from geometric measurements
(lensing). The theory satisfies the relativistic requirements that plague simple modified inertia theories.

50 THE COSMOLOGICAL REGIME

Correcting an error requires measuring syndromes and applying recovery operations. The syndrome
measurement yields classical information that must be erased before the next cycle. By Landauer’s principle,
erasing one bit of information at temperature 𝑇 dissipates heat 𝑄 ≥ 𝑘𝐵𝑇 ln 2. For a cosmological region, the
natural heat sink is the causal horizon. A de Sitter universe with Hubble parameter 𝐻 has a horizon at radius
𝑟𝐻 = 𝑐/𝐻 and an associated Gibbons-Hawking temperature:

𝑇dS =
ℏ𝐻

2𝜋𝑘𝐵
. (236)

This is the minimum temperature for any thermodynamic process in de Sitter space.

50.1 THE DARK ENERGY DENSITY

The correction rate is bounded by the boundary capacity. In a spherical region of radius 𝐿, the boundary area
scales as 𝐿2 and the volume as 𝐿3. The correction rate per unit volume is 𝛾corr ∼ 𝐿2/𝐿3 = 1/𝐿. Identifying 𝐿
with the Hubble radius 𝐿 ∼ 𝐻−1, we have 𝛾corr ∼ 𝐻. Combining these factors, the exhaust energy density is:

𝜌ex ∼ 𝛾corr · 𝑘𝐵𝑇dS ∼ 𝐻 · ℏ𝐻 ∼ ℏ𝐻2. (237)

In Planck units this yields 𝜌Λ ∼ 𝑀2
𝑃
𝐻2. This recovers the holographic dark energy relation. For the present

Hubble parameter 𝐻0, the predicted density is 𝜌Λ ∼ (10−3 eV)4. Observation yields 𝜌obs
Λ

∼ (2 × 10−3 eV)4.
The vacuum energy behaves as the boundary-limited exhaust of the code rather than a static zero-point energy.

50.2 TRACKING BEHAVIOR

The exhaust density 𝜌ex ∼ 𝑀2
𝑃
𝐻2 tracks the Hubble parameter. In the early universe (large 𝐻), vacuum

energy was higher; in the late universe (small 𝐻), it is lower. This differs from a cosmological constant, which
is strictly constant. The tracking behavior means that dark energy was more significant in the early universe
than ΛCDM predicts. The ratio of dark energy to matter density evolves as:

𝜌Λ

𝜌𝑚
∝ 𝐻2𝑎3 ∝ 𝑎3(1+𝑤𝑚 )/2, (238)

where 𝑎 is the scale factor and 𝑤𝑚 is the matter equation of state. This produces a gradual transition from
matter domination to dark energy domination rather than the sharp transition of ΛCDM.



Critical Code Theory 63

50.3 EQUATION OF STATE

For tracking dark energy with 𝜌 ∝ 𝐻2, the effective equation of state parameter 𝑤 is close to but not exactly
−1. The deviation from 𝑤 = −1 depends on the rate of change of 𝐻:

𝑤 = −1 + 2 ¤𝐻
3𝐻2 . (239)

In the present epoch, ¤𝐻/𝐻2 ≈ −0.5 for a matter-dominated universe transitioning to dark energy domination,
giving 𝑤0 ≈ −0.95. Recent DESI results hint at 𝑤0 > −1, consistent with this prediction. A confirmed
measurement of𝑤 = −1.00±0.01 would falsify the tracking model and require revision of the boundary-limited
mechanism.

50.4 EARLY STRUCTURE FORMATION

Higher 𝜌Λ(𝑧) at early times enhances the linear growth factor by providing additional vacuum energy support
against gravitational collapse. JWST observations of unexpectedly massive galaxies at 𝑧 > 10 create tension
with standard ΛCDM, which predicts insufficient time for such structures to form. The tracking mechanism
naturally alleviates this tension: the early universe had higher vacuum energy density, which modified the
expansion history and allowed more time for structure formation at fixed redshift. The enhancement factor
scales as (1 + 𝑧)3𝑤eff , where 𝑤eff is the effective equation of state during the structure formation epoch.

51 COSMIC TIMESCALES

The vacuum cell supplies two universal counters: the Hilbert space size 2𝑛, and the derived exponents built
from (𝑛, 𝑑, 𝑘). Cosmological observables are bookkeeping identities that relate present-day parameters to
these counters.

51.1 THE HUBBLE CONSTANT

The Steane code has 𝑛 = 7 physical qubits. Each qubit has two basis states, giving a cell Hilbert space of
dimension 2𝑛 = 128. The full configuration space of a single cell has 22𝑛 = 2128 distinguishable quantum
states. The exponent 128 satisfies a non-trivial identity specific to the Steane code:

(𝑛 − 𝑘) (𝑛𝑑) + (𝑑 − 𝑘) = 6 × 21 + 2 = 128 = 2𝑛. (240)

This identity does not hold for other codes. The exponent encodes both the Hilbert space structure and the
product of stabilizer qubits (𝑛 − 𝑘 = 6) with Cabibbo incidence (𝑛𝑑 = 21), plus the correctable error count
(𝑑 − 𝑘 = 2).

The vacuum samples its configuration space through electromagnetic fluctuations. The sampling frequency
is set by the lightest stable charged particle. Quarks are confined. Heavy leptons decay rapidly. Neutrinos
do not couple to the electromagnetic sector. The electron is the unique lightest stable charged defect. The
electron Compton time 𝑡𝑒 = ℏ/(𝑚𝑒𝑐2) is the fundamental fluctuation period. A cosmic time measures how
long the vacuum takes to sample all configurations at the cell level. The Hubble parameter is the electron
mass divided by the total configuration count:

𝐻0 =
𝑚𝑒

22𝑛 =
𝑚𝑒

2128 . (241)

Converting to standard units: 𝐻0 = 0.511 MeV/(3.4 × 1038) = 1.50 × 10−33 eV. For 𝐻0 = 70 km/s/Mpc,
experiment gives 1.49 × 10−33 eV. Agreement: 0.6%. The double exponential 22𝑛 counts how many distinct
global states can be built from local configurations. This is the origin of the large hierarchy between particle
physics scales and cosmological scales.
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51.2 THE AGE OF THE UNIVERSE

The Hubble time follows immediately. Let 𝑡𝑒 = ℏ/(𝑚𝑒𝑐2) = 1.29 × 10−21 s be the electron Compton time:

𝑡𝐻 =
1
𝐻0

= 2128 × 𝑡𝑒 . (242)

Result: 𝑡𝐻 = 4.4 × 1017 s = 13.9 Gyr. Observation: 13.97 Gyr. Agreement: 0.6%. The age of the universe
counts how many vacuum configurations have been sampled since the initial state.

The formula requires a dynamical interpretation. The vacuum operates at criticality (Part II). Critical
systems exhibit maximal relaxation times through critical slowing down: fluctuations at the critical point take
the longest possible time to decorrelate. For a system with 𝑁 configurations, the relaxation time scales with
𝑁 . The vacuum has 2128 configurations per cell. Its relaxation time is 2128 times the fundamental fluctuation
period. The Hubble expansion is the critical relaxation of the vacuum code.

51.3 THE CMB TEMPERATURE

The cosmic microwave background temperature involves the exponent 4𝑛 + 𝑑 = 31:

𝑇CMB =
𝑚𝑒

24𝑛+𝑑 =
𝑚𝑒

231 . (243)

Converting: 511 keV/231 ≈ 240 𝜇eV ≈ 2.7 K. Observation: 2.725 K. Agreement: 1%. The exponent
decomposes as 4𝑛 + 𝑑 = 28 + 3. The factor 4𝑛 = 28 represents four holographic layers from the electron
scale to the recombination scale. The additional 𝑑 = 3 bits encode the syndrome depth at which photons
decouple from matter.

51.4 RECOMBINATION AND MATTER-RADIATION EQUALITY

The base recombination redshift 2𝑛+𝑑+𝑛 = 1031 counts thermal states at the syndrome scale. Recombination is
a coherent quantum process where atomic captures interfere. The syndrome enhancement (𝑑2 +1)/𝑑2 = 10/9
enters at amplitude level:

𝑧rec = (2𝑛+𝑑 + 𝑛) ×
√︂
𝑑2 + 1
𝑑2 = 1031 ×

√︂
10
9

= 1087. (244)

Measured: 1089.80 ± 0.21. Error: 0.3%.
Matter-radiation equality follows the same amplitude-level correction:

𝑧eq = 2𝑛+𝑑+𝑘 × 𝑛 + 𝑑 + 𝑘
𝑛

×
√︂
𝑑2 + 1
𝑑2 = 3219 ×

√︂
10
9

= 3392. (245)

Measured: 3402 ± 26. Error: 0.3%.

51.5 THE COSMOLOGICAL CONSTANT PROBLEM

The cosmological constant problem asks why dark energy is 122 orders of magnitude smaller than the natural
Planck scale. The code structure provides an answer. The dark energy density in Planck units is:

log10

(
𝜌Λ

𝜌𝑃

)
= −2(𝑑2𝑛 − 2) = −2 × 61 = −122. (246)

The factor 𝑑2𝑛− 2 = 9× 7− 2 = 61 sets the age ratio in Planck units. The cosmological constant is the square
of the age ratio:

𝜌Λ/𝜌𝑃 ∼
(
𝑡𝑃

𝑡age

)2
. (247)
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The infamous 10−122 is structural. The dark energy density is determined by cosmic age, which is itself
determined by the Hilbert space dimension 2128.

Section 5 derived the dark energy density from boundary-limited error correction: 𝜌Λ ∼ 𝑀2
𝑃
𝐻2. This

section derived the Hubble parameter from configuration counting: 𝐻0 = 𝑚𝑒/2128. These two results must be
mutually consistent. Combining them:

𝜌Λ

𝜌𝑃
∼

(
𝑚𝑒

𝑀𝑃

)2
× 2−256. (248)

The two factors contribute: (𝑚𝑒/𝑀𝑃)2 ∼ 10−45 and 2−256 ∼ 10−77. Therefore log10(𝜌Λ/𝜌𝑃) ≈ −45 − 77 =

−122. The boundary-limited derivation and the configuration-counting derivation yield the same suppression
factor. The 10−122 emerges from two independent arguments: the thermodynamic cost of error correction at
the horizon scale, and the ergodic exploration of the vacuum configuration space at the electron frequency.

52 PRIMORDIAL NUCLEOSYNTHESIS

The code parameters are tested in a completely different regime: the thermal plasma of the early universe.
The same integers (𝑛, 𝑘, 𝑑) = (7, 1, 3) that determine particle masses also determine nucleosynthesis yields.

52.1 PRIMORDIAL HELIUM

The helium mass fraction:
𝑌𝑝 =

𝑑

𝑛 + 𝑑 + 2
=

3
12

= 0.25. (249)

Measured: 0.245 ± 0.003. Error: 2%. The denominator 𝑛 + 𝑑 + 2 = 12 counts the total degrees of freedom
in a vacuum cell including gauge freedom. The same factor appears in the Bekenstein-Hawking entropy.

52.2 PRIMORDIAL DEUTERIUM

Deuterium is the simplest composite nucleus. Its binding samples only the syndrome subspace rather than
the full code structure. The base suppression 2−(2𝑛+𝑘 ) = 2−15 counts the syndrome and logical capacity of
two code blocks, matching deuterium’s nucleon number 𝐴 = 2. The syndrome space has dimension 𝑑2 = 9
nontrivial error patterns. The total code footprint is 𝑛+𝑑+𝑘 = 11. The correction factor 𝑑2/(𝑛+𝑑+𝑘) = 9/11
measures the fraction of code structure accessible to 𝐴 = 2 binding:

D/H = 2−(2𝑛+𝑘 ) × 𝑑2

𝑛 + 𝑑 + 𝑘 = 2−15 × 9
11

= 2.5 × 10−5. (250)

Measured: (2.527 ± 0.030) × 10−5. Error: 1.1%.

52.3 THE LITHIUM PROBLEM

Standard Big Bang nucleosynthesis overpredicts primordial 7Li by a factor of approximately 3. This is a
major unsolved problem in cosmology. The base suppression is 2−𝑑 (𝑛+𝑑+𝑘 ) = 2−33, where the exponent
𝑑 (𝑛 + 𝑑 + 𝑘) = 33 is the product of the code distance and the total code footprint. Lithium-7 has 𝐴 = 7 = 𝑛

nucleons, exactly filling one code block. The binding involves the full error-correction capacity (𝑑 + 𝑘) = 4
distributed over 𝑑 = 3 correction layers, giving the capacity factor (𝑑 + 𝑘)/𝑑 = 4/3:

Li/H = 2−𝑑 (𝑛+𝑑+𝑘 ) × 𝑑 + 𝑘
𝑑

= 2−33 × 4
3
= 1.6 × 10−10. (251)

Standard BBN predicts approximately 5 × 10−10, which is 300% too high. The code prediction matches the
observed value (1.6 ± 0.3) × 10−10.
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52.4 THE BARYON ASYMMETRY

The baryon-to-photon ratio 𝜂 = 𝑛𝐵/𝑛𝛾 ≈ 6×10−10 measures the matter-antimatter asymmetry of the universe.
Standard baryogenesis requires baryon number violation, but CCT preserves 𝐵 (X and Z sectors remain
distinct). The asymmetry is therefore primordial, encoded in the initial conditions of the vacuum code.

The asymmetry magnitude is set by CP violation at the recombination scale. The CP phase contributes
sin 𝛿𝐶𝐾𝑀 =

√︁
1 − (𝑑/𝑛)2 =

√
40/7. The thermal suppression uses the same exponent as the CMB temperature,

giving a base factor 2−(4𝑛+𝑑) = 2−31. Baryons are composite objects spanning multiple Fano positions
connected by color flux. The geometric reach of a baryon is (𝑛 + 𝑑) = 10: it samples all 𝑛 = 7 qubit positions
plus the 𝑑 = 3 stabilizer constraints that bind them:

𝜂 =
sin 𝛿𝐶𝐾𝑀

24𝑛+𝑑 × 𝑛 + 𝑑
𝑛

=

√
40/7
231 × 10

7
= 6.0 × 10−10. (252)

Measured: (6.1 ± 0.04) × 10−10. Error: 1.6%.

52.5 THE BARYON FRACTION

The ratio of baryonic to total matter density has a naive estimate of 1/𝑛 = 1/7: baryons occupy one of the
𝑛 = 7 qubit positions in the vacuum code. Matter types are distinguished by their syndrome signatures. The
syndrome space has 𝑑2 = 9 nontrivial patterns plus 1 trivial pattern. Baryonic matter carries color charge and
couples to all 𝑑2 + 1 distinguishable configurations:

Ω𝑏

Ω𝑚
=

1
𝑛
× 𝑑2 + 1

𝑑2 =
1
7
× 10

9
=

10
63

= 0.159. (253)

The factor (𝑑2 + 1)/𝑑2 = 10/9 is the inverse of the atmospheric angle correction 𝑑2/(𝑑2 + 1) = 9/10: both
measure how matter types are distinguished by syndrome signatures. Dark matter constitutes 1−10/63 ≈ 84%
of total matter. Measured: 0.157. Error: 1.3%.

53 FROM PARTICLES TO COSMOS

The same integers that set quark masses determine stellar death and cosmic structure. The framework extends
without modification from the electron scale to the Hubble scale.

53.1 STELLAR ENDPOINTS

Stars die when nuclear burning can no longer support them against gravity. The mass limits at which different
endpoints occur are set by the balance between degeneracy pressure and gravitational collapse. This balance
involves the same code parameters that determine particle masses.

The Chandrasekhar limit marks the maximum mass of a white dwarf:

𝑀𝐶ℎ =
𝑑 + 𝑘
𝑑

𝑀⊙ =
4
3
𝑀⊙ = 1.33𝑀⊙ . (254)

Observed: 1.4𝑀⊙. Error: 5%. The coefficient 4/3 appears throughout the framework: in the Planck mass
prefactor, the lithium abundance correction, and the polytropic index of degenerate matter.

The Tolman-Oppenheimer-Volkoff limit marks the maximum mass of a neutron star:

𝑀𝑇𝑂𝑉 =
𝑛𝑑

𝑛 + 𝑑 𝑀⊙ =
21
10
𝑀⊙ = 2.1𝑀⊙ . (255)
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Observed: 2.0–2.3𝑀⊙. The factor 21/10 combines the Cabibbo incidence (𝑛𝑑 = 21) with the geometric
dimension (𝑛 + 𝑑 = 10).

The minimum stellar black hole mass:

𝑀min,BH = 𝑑 × 𝑀⊙ = 3𝑀⊙ . (256)

Observed: approximately 3𝑀⊙. This sets the lower edge of the black hole mass distribution, creating the
“mass gap” between neutron stars and black holes.

53.2 STRUCTURE FORMATION

The Jeans mass at recombination sets the minimum scale for gravitational collapse:

log10(𝑀𝐽/𝑀⊙) = 𝑛 − 𝑑 + 1 = 5. (257)

The Jeans mass is ∼ 105𝑀⊙ , matching the scale of the first collapsed structures: globular clusters and dwarf
galaxies. The exponent 𝑛 − 𝑑 + 1 = 5 is the reconstruction number of the Steane code, the minimum qubits
needed to determine the logical state.

The number of inflationary e-folds lies in the range 50–60. Both endpoints are code numbers:

𝑁𝑚𝑖𝑛 = 𝑛
2 + 1 = 50, (258)

𝑁𝑚𝑎𝑥 = (𝑛 − 𝑘) (𝑛 + 𝑑) = 60. (259)

The inflationary epoch samples between 𝑛2 + 1 and (𝑛 − 𝑘) (𝑛 + 𝑑) Hubble volumes before reheating.
The universe reionized when the first stars ionized the intergalactic medium:

𝑧𝑟𝑒 = 𝑛 = 7. (260)

Planck measurement: 𝑧𝑟𝑒 = 7.7 ± 0.7. The reionization redshift equals the qubit count.

53.3 COSMIC COINCIDENCES

The matter density and dark energy density are comparable today. This “cosmic coincidence” occurs at:

𝑧Λ =
2

𝑛 − 𝑑 + 1
=

2
5
= 0.4. (261)

This matches the observed redshift of matter-dark energy equality. The coincidence is structural: it occurs
when the universe has expanded by a factor set by the reconstruction number 𝑛 − 𝑑 + 1 = 5.

53.4 GLOBAL COUNTS

The number of baryons in the observable universe:

log10(𝑁𝑏) = 10(𝑛 + 𝑘) = 80. (262)

The factor 𝑛 + 𝑘 = 8 is the total code capacity. Ten holographic layers of 8 information units each give 1080

baryons.
The total entropy in CMB photons and neutrinos:

log10(𝑆𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒) = 10𝑛 + 𝑑 (𝑛 − 𝑘) = 70 + 18 = 88. (263)

The entropy combines ten reach layers (10𝑛 = 70) with the charm quark factor (𝑑 (𝑛 − 𝑘) = 18).
The Greisen-Zatsepin-Kuzmin cutoff in the cosmic ray spectrum:

𝐸𝐺𝑍𝐾 = 𝑚𝑒 × 102𝑛 = 𝑚𝑒 × 1014 ≈ 5 × 1019 eV. (264)

This matches the observed cutoff. The factor 102𝑛 represents two holographic layers of energy enhancement
from the electron scale.
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53.5 THE HIERARCHY OF SCALES

The exponents appearing in different physical scales form a systematic hierarchy built from (𝑛, 𝑑, 𝑘) = (7, 3, 1):

Scale Exponent Formula

Jeans mass 5 𝑛 − 𝑑 + 1
Primordial perturbations 9 𝑑2

CMB temperature 31 4𝑛 + 𝑑
Cosmic age (log10) 61 𝑑2𝑛 − 2
Planck mass 74 10𝑛 + 𝑑 + 𝑘
Baryon count 80 10(𝑛 + 𝑘)
Universe entropy 88 10𝑛 + 𝑑 (𝑛 − 𝑘)
Hilbert space (log2) 128 2𝑛
Λ suppression −122 −2(𝑑2𝑛 − 2)

The coefficients of 𝑛 reveal the depth of vacuum structure probed: 4 layers for the CMB, 𝑑2 = 9 layers for
cosmic age, 10 layers for Planck and baryon scales. The pattern is not numerology. Each exponent traces to a
specific counting argument: holographic layers, syndrome dimensions, configuration spaces. The vacuum
code provides a unified accounting system from the electron mass to the entropy of the observable universe.
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Part X: Assessment and Conclusion
54 SUMMARY

This monograph derived fundamental physical parameters from the premise that the vacuum is a tessellation
of Steane [[7, 1, 3]] code cells on the triangular lattice, operating at critical throughput. The Standard Model’s
19+ free parameters reduce to algebraic combinations of three integers and one group order.

55 THE INTEGER DICTIONARY

55.1 PRIMARY CODE PARAMETERS

Integer Symbol Meaning

7 𝑛 Number of physical qubits in the Steane code
3 𝑑 Code distance (minimum weight of logical operators)
1 𝑘 Number of encoded logical qubits

168 |PSL(2, 7) | Order of the Fano plane automorphism group

55.2 DERIVED INTEGERS

Integer Formula Meaning Appears In

2 𝑑 − 𝑘 Correctable error weight Pion, Schwarzschild
4 𝑛 − 𝑑 Syndrome bit excess Generation spacing
6 𝑛 − 𝑘 Stabilizer qubit count CKM, string tension
8 𝑛 + 𝑘 Total code capacity Peak binding, 𝛼𝑠
9 𝑑2 Syndrome space dimension Rho meson, proton moment
10 𝑛 + 𝑑 Geometric dimension Solar angle, Bekenstein
11 𝑛 + 𝑑 + 𝑘 Full code footprint Proton ratio, 𝐽/𝜓
12 𝑛 + 𝑑 + 2 DOF per horizon cell Bekenstein factor
21 𝑛𝑑 Point-line incidences Cabibbo angle
27 𝑑3 Spectral depth 𝐷 meson, Υ
28 𝑛(𝑑 + 1) Fano coordinatizations Gen-2 correction
33 𝑑 (𝑛 + 𝑑 + 𝑘) Neutrino coupling Δ𝑚2 ratio
45 𝑁𝜋,𝑒 Electron 𝜋-rung Electron mass
128 2𝑛 Hilbert space dimension 𝛼−1 base
137 2𝑛 + 𝑑2 Channel capacity 𝛼−1

1836 168 × 11 − 12 Proton sampling 𝑚𝑝/𝑚𝑒

Every mass, mixing angle, and coupling constant traces to combinations of {𝑛, 𝑑, 𝑘} = {7, 3, 1} and
|PSL(2, 7) | = 168. No integer outside this family appears in any validated prediction.

56 PRECISION PREDICTIONS

All predictions derive from the code parameters (𝑛, 𝑘, 𝑑) = (7, 1, 3), the group order |PSL(2, 7) | = 168, and
the Heawood eigenvalues 𝜆1 = 3, 𝜆2 =

√
2. No free parameters are adjusted. Tier markers indicate precision:

T1 (< 0.1%), T2 (0.1–1%), T3 (1–5%).
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56.1 FUNDAMENTAL CONSTANTS

Quantity Formula Predicted Measured Error Tier

𝛼−1 2𝑛 + 𝑑2 + 𝜋/87 137.036 137.036 5 × 10−8 T1
sin2 𝜃𝑊 3/13 0.2308 0.2312 0.2% T2
𝛼𝑠 (𝑀𝑍 ) 𝑑/(2(𝑛 + 𝑑 + 𝑘) + 𝑑) 0.120 0.118 2% T3
Higgs VEV 𝑣 𝑀𝑃𝜋

−168/5 × 1.024 247 GeV 246 GeV 0.4% T2
Higgs mass 𝑚𝐻 𝑣/2 123 GeV 125 GeV 1.8% T3
ΛQCD 𝑑𝑈 210 MeV 210 MeV < 0.1% T1

56.2 MASS RATIOS

Quantity Formula Predicted Measured Error Tier

𝑚𝑝/𝑚𝑒 168 × 11 − 12 1836 1836.15 0.008% T1
𝑚𝜇/𝑚𝑒 (3𝛼−1 + 2)/2 + 3/11 206.77 206.77 0.002% T1
𝑚𝜏/𝑚𝜇 (𝑛2 + 1)/𝑑 + 𝑘/𝑛 16.81 16.82 0.04% T1
Koide 𝑄 2/𝑑 0.6667 0.6667 < 0.001% T1

56.3 CHARGED FERMION MASSES

From the unified formula 𝑚 = 𝑣 × 𝜀𝛼𝑏+𝛽 (4−gen)+𝛾 × C.

Particle Correction C Predicted Measured Error Tier

Top 5/7 175.7 GeV 172.8 GeV 1.7% T3
Bottom 0.311 4.13 GeV 4.18 GeV 1.2% T3
Tau 0.356 1.78 GeV 1.777 GeV 0.2% T2
Charm (1 + 1/

√
2) · 29/28 1.27 GeV 1.27 GeV 0.0% T1

Strange (1/3) · 29/28 93.2 MeV 93 MeV 0.2% T2
Muon 29/28 106.0 MeV 105.7 MeV 0.3% T2
Up 0.147 2.15 MeV 2.16 MeV 0.5% T2
Down 6/7 4.74 MeV 4.67 MeV 1.5% T3
Electron (29/28)/(3

√
2) 0.511 MeV 0.511 MeV < 0.1% T1

56.4 MESON MASSES

From the mesonic quantum𝑈 = 𝛼−1𝑚𝑒 = 70.025 MeV.
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Meson Formula Predicted Measured Error Tier

𝜋 2𝑈 140.0 MeV 139.6 MeV 0.3% T2
𝐾 𝑛𝑈 490.2 MeV 493.7 MeV 0.7% T2
𝜌 (2 + 𝑑2)𝑈 770.3 MeV 775.3 MeV 0.6% T2
𝜂 (𝑛 + 𝑘)𝑈 560 MeV 548 MeV 2.2% T3
𝜂′ (2𝑛 − 𝑘/𝑑)𝑈 957 MeV 958 MeV 0.1% T2
𝜙 2𝑛𝑈 · 21/20 1029 MeV 1019 MeV 1.0% T2
𝐷 𝑑3𝑈 1891 MeV 1869 MeV 1.2% T3
𝐷𝑠 (𝑑3 + 𝑘)𝑈 1961 MeV 1968 MeV 0.4% T2
𝐽/𝜓 4(𝑛 + 𝑑 + 𝑘)𝑈 3081 MeV 3097 MeV 0.5% T2
𝐵 (84 − 𝑑2)𝑈 5252 MeV 5279 MeV 0.5% T2
Υ 𝑑3(𝑛 − 𝑘 + 1)𝑈 9453 MeV 9460 MeV 0.07% T1

56.5 BARYON MASSES

Baryon Formula Predicted Measured Error Tier

Δ(1232) 𝑑 (𝑛 − 𝑘)𝑈 1260 MeV 1232 MeV 2.3% T3
Σ (2𝑛 + 𝑑)𝑈 1190 MeV 1192 MeV 0.2% T2
Ξ (𝑑 (𝑛 − 𝑘) + 1)𝑈 1330 MeV 1315 MeV 1.1% T3
Ω− 𝑑 (𝑛 + 𝑘)𝑈 1681 MeV 1672 MeV 0.5% T2

56.6 NUCLEAR BINDING

Observable Formula Predicted Measured Error Tier

Deuteron 𝐵𝑑 (𝑈/33) · 21/20 2.23 MeV 2.224 MeV 0.3% T2
𝐵(3He) (𝑑 − 𝑘)𝑈/(𝑑 (𝑛 − 𝑘)) 7.78 MeV 7.72 MeV 0.8% T2
𝐵(4He) (𝑑 + 𝑘)𝑈/(𝑛 + 𝑑) 28.0 MeV 28.3 MeV 1.1% T3
𝐵(7Li) (𝑛 − 𝑑)𝑈/𝑛 40.0 MeV 39.2 MeV 2.0% T3
𝐵(12C) 12𝑈/𝑑2 93.3 MeV 92.2 MeV 1.2% T3
(𝐵/𝐴)Fe 𝑈/(𝑛 + 𝑘) 8.75 MeV 8.79 MeV 0.5% T2
Hoyle state 𝑈/𝑑2 7.78 MeV 7.65 MeV 1.7% T3
String tension

√
𝜎 (𝑛 − 𝑘)𝑈 · 21/20 441 MeV 440 MeV 0.2% T2

56.7 QUARK MIXING (CKM)

Element Formula Predicted Measured Error Tier

|𝑉𝑢𝑠 | (Cabibbo) 1/
√
𝑛𝑑 0.218 0.225 3.1% T3

|𝑉𝑢𝑑 |
√︁

20/21 0.976 0.974 0.2% T2
|𝑉𝑐𝑏 | (8/7)/(6

√
21) 0.0416 0.0410 1.5% T3

|𝑉𝑢𝑏 |
√︁

8/7/(60
√

21) 0.00389 0.00382 1.8% T3
|𝑉𝑡𝑠 |

√︁
8/7/(6

√
21) 0.0389 0.0388 0.3% T2

|𝑉𝑡𝑑 | 16/(420
√

21) 0.0083 0.0080 3.7% T3
𝛿CKM arccos(𝑑/𝑛) 64.6 65.5 0.6𝜎 –
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56.8 LEPTON MIXING (PMNS)

Quantity Formula Predicted Measured Error Tier

sin2 𝜃12 (solar) 𝑑/(𝑛 + 𝑑) 0.300 0.304 1.3% T3
sin2 𝜃23 (atmos.) 1

2 · 𝑑2

𝑑2+1 0.450 0.449 0.2% T2

sin2 𝜃13 (reactor) 1
𝑛2

√︃
𝑛+𝑘
𝑛

0.0218 0.0218 < 0.5% T2
Δ𝑚2

32/Δ𝑚
2
21 𝑑 (𝑛 + 𝑑 + 𝑘) 33 32.6 1.3% T3

𝛿PMNS 𝜋 + arccos(𝑑/𝑛) 245 200 ± 40 1𝜎 –

56.9 COSMOLOGICAL PARAMETERS

Quantity Formula Predicted Measured Error Tier

𝑛𝑠 (spectral index) 1 − 1/(4𝑛 + 𝑘) 0.9655 0.9649 0.06% T1
𝐻0 𝑚𝑒/2128 70 km/s/Mpc 70 km/s/Mpc 0.6% T2
𝑇CMB 𝑚𝑒/231 2.7 K 2.725 K 1% T2
𝑧rec (2𝑛+𝑑 + 𝑛)

√︁
10/9 1087 1090 0.3% T2

𝑧eq
211 ·11

7

√︁
10/9 3392 3402 0.3% T2

𝑌𝑝 (helium) 𝑑/(𝑛 + 𝑑 + 2) 0.25 0.245 2% T3
D/H (deuterium) 2−15 · 𝑑2/(𝑛 + 𝑑 + 𝑘) 2.5 × 10−5 2.5 × 10−5 1.1% T3
Li/H (lithium) 2−33 · (𝑑 + 𝑘)/𝑑 1.6 × 10−10 1.6 × 10−10 < 1% T2
Ω𝑏/Ω𝑚 (𝑑2 + 1)/(𝑛 · 𝑑2) 0.159 0.157 1.3% T3
Baryon asymmetry 𝜂 sin 𝛿 · (𝑛+𝑑)

𝑛·231 6.0 × 10−10 6.1 × 10−10 1.6% T3
𝐴𝑠 (scalar amp.) 10−9+1/3 2 × 10−9 2.1 × 10−9 5% T3

56.10 ELECTROWEAK OBSERVABLES

Quantity Formula Predicted Measured Error Tier

𝑀𝑊 see Part VII 80.5 GeV 80.4 GeV 0.15% T2
Γ(𝑍 → ℓℓ) see Part VII 84.5 MeV 84.0 MeV 0.6% T2
sin2 𝜃eff

𝑊
(3/13) (1 + 3𝛼/8) 0.2314 0.2315 0.04% T1

𝜌 parameter 1 + 𝛿𝜌 1.0097 1.0102 0.05% T1
𝐴𝑒 (asymmetry) see Part VII 0.153 0.152 1% T2
Γinv see Part VII 504 MeV 499 MeV 1% T2
𝑄𝑊 (cesium) −(10𝑛 + 𝑑) −73 −72.82 0.2% T2

56.11 PROTON AND NEUTRON STRUCTURE

Quantity Formula Predicted Measured Error Tier

𝑟𝑝 (proton radius) (𝑑/10)𝑟𝑒 0.845 fm 0.841 fm 0.4% T2
𝜅𝑝 (proton moment) 𝑑2/(𝑛 − 𝑑 + 1) 1.800 1.793 0.4% T2
𝜅𝑛 (neutron moment) −𝑑3/(2𝑛) −1.929 −1.913 0.8% T2
𝜇𝑝/𝜇𝑛 −196/135 −1.452 −1.460 0.5% T2
𝑚𝑛 − 𝑚𝑝 (5/2)𝑚𝑒 1.278 MeV 1.293 MeV 1.2% T3
Proton spin Σ 𝑑/(𝑛 + 𝑑) 0.30 0.33 ± 0.05 0.6𝜎 –



Critical Code Theory 73

56.12 QED AND QCD PRECISION

Quantity Formula Predicted Measured Error Tier

Lamb shift 𝛼5𝑚𝑒 (4/10) 1060 MHz 1058 MHz 0.2% T2
𝐶2 (g-2) −55/168 −0.3274 −0.3285 0.3% T2
Δ𝑎𝜇 (muon g-2) 𝛼3/156 2.49 × 10−9 2.51 × 10−9 0.8% T2
Fine structure 𝛼4𝑚𝑒/168 10.7 GHz 10.97 GHz 2.4% T3
Hyperfine splitting (22/3)𝛼4𝑚2

𝑒/𝑚𝑝 1395 MHz 1420 MHz 1.8% T3
𝑓𝜋 (pion decay) (13/7)𝑈 130.0 MeV 130.2 MeV 0.15% T2
𝑓𝐾/ 𝑓𝜋 1 + 2/10 1.200 1.197 0.25% T2
𝑇QCD (transition) (20/9)𝑈 155.6 MeV 155 MeV 0.4% T2
Quark condensate −(𝑛 − 𝑑)𝑈 −280 MeV −270 MeV 4% T3

56.13 CP VIOLATION AND RARE DECAYS

Quantity Formula Predicted Measured Error Tier

|𝜀 | (kaon CP) 1/((𝑛𝑑)2 + 𝑛 + 𝑘) 2.227 × 10−3 2.228 × 10−3 0.04% T1
sin(2𝛽) (𝐵 CP) 𝑛/(𝑛 + 𝑑) 0.700 0.699 ± 0.017 < 1𝜎 –
𝐵𝑠 → 𝜇𝜇 𝑑 × 10−𝑑2 3 × 10−9 3.09 × 10−9 3% T3
𝐵𝑠/𝐵𝑑 mixing (𝑛 − 𝑘)2 36 35.0 3% T3

56.14 EXOTIC HADRONS

State Formula Predicted Measured Error Tier

𝑋 (3872) 𝑚𝐷 + 𝑚𝐷∗ −𝑈/(𝑛(𝑛 + 𝑑)) 3875 MeV 3872 MeV 0.09% T1
𝑇𝑐𝑐 (3875) 𝑚𝐷 + 𝑚𝐷∗ −𝑈/(𝑛𝑑) 3873 MeV 3875 MeV 0.05% T1
𝑍𝑐 (3900) 𝑚𝐽/𝜓 + 𝑚𝜌 +𝑈/𝑛 3882 MeV 3887 MeV 0.1% T2
𝑍𝑐 (4020) 𝑚𝑍𝑐 (3900) + 2𝑈 4022 MeV 4024 MeV 0.05% T1
𝑃𝑐 (4312) 𝑚Σ𝑐

+ 𝑚𝐷 −𝑈/𝑑2 4311 MeV 4312 MeV 0.02% T1
𝑃𝑐 (4440) 𝑚Σ𝑐

+ 𝑚𝐷∗ −𝑈/(𝑛 − 𝑘) 4449 MeV 4440 MeV 0.2% T2
𝑃𝑐 (4457) 𝑚Σ𝑐

+ 𝑚𝐷∗ −𝑈/(𝑛 + 𝑘) 4452 MeV 4457 MeV 0.1% T2
𝑋 (6900) 2𝑚𝐽/𝜓 + (𝑛 + 𝑑)𝑈 6894 MeV 6905 MeV 0.2% T2

56.15 EXACT STRUCTURAL RELATIONS

Quantity Formula Value

GUT Weinberg angle 𝑑/(𝑛 + 𝑘) 3/8 = 0.375
Neutrino temperature ratio ((𝑛 − 𝑑)/(𝑛 + 𝑑 + 𝑘))1/3 (4/11)1/3

Dark matter fraction (𝑛 − 𝑘)/𝑛 6/7 ≈ 85%
Schwarzschild coefficient (𝑑 − 1)/𝑘 2
Bekenstein-Hawking factor 𝑑/(𝑛 + 𝑑 + 2) 1/4

56.16 STRUCTURAL DERIVATIONS

These are geometric necessities. Contradiction with observation would falsify the framework.
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Result Origin Status

Gauge group 𝑆𝑈 (3) × 𝑆𝑈 (2) ×𝑈 (1) Fano × syndrome × bulk phase Derived
Three fermion generations (3, 3, 1) partition of Fano plane Derived
Quark charges +2/3, −1/3 𝑁inc − 4/3 Derived
Lepton charges 0, −1 𝑁inc − 2 Derived
𝜃QCD = 0 CSS symmetry Derived
Dark energy 𝜌Λ ∝ 𝐻2 Boundary-limited correction Derived

56.17 SUMMARY STATISTICS

Precision Tier Count Mean Error

T1 (< 0.1%) 17 0.03%
T2 (0.1%–1%) 54 0.5%
T3 (1%–5%) 30 2.1%
Within uncertainty 5 —

Total 106 ∼0.9%

57 FALSIFICATION CRITERIA

The framework makes specific predictions that current or near-future experiments can test.

57.1 TENSOR-TO-SCALAR RATIO

The primordial tensor-to-scalar ratio is:

𝑟 =
1

(𝑛 − 𝑘)2 =
1
36

= 0.028 (265)

Detection at 𝑟 > 0.05 or a null result at 𝑟 < 0.01 would falsify the prediction.

57.2 NEUTRINO MASSES

The 𝜋-ladder places the lightest neutrino at 𝑁𝜋 = 60, giving 𝑚1 ≈ 0.008 eV and sum Σ𝑚𝜈 ≈ 0.07 eV. Current
bounds: Σ𝑚𝜈 < 0.12 eV. A measurement outside 0.04–0.15 eV would require revision.

57.3 LEPTONIC CP PHASE

The PMNS CP phase is predicted as 𝛿PMNS = 𝜋+arccos(𝑑/𝑛) = 245. Current measurements favor ∼ 200±40.
DUNE and Hyper-Kamiokande will measure this to ±10 precision. A confirmed value outside 220°–270°
would require revision of the CSS duality relationship between quarks and leptons.

57.4 NO AXION

The strong CP problem is solved by CSS symmetry. The vacuum angle 𝜃 = 0 is enforced structurally. Axion
detection would falsify this resolution.

57.5 NO SUPERSYMMETRY

The hierarchy problem is solved geometrically: 𝑀𝑃/𝑚𝑒 = (4/3) × 274. Supersymmetric partners at the TeV
scale are not predicted. LHC null results are consistent with this prediction.
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57.6 DARK ENERGY EQUATION OF STATE

The boundary-limited model predicts 𝑤0 ≈ −0.95. Current DESI results (−0.99 ± 0.15) are consistent. A
confirmed 𝑤 = −1.00 ± 0.01 would falsify the tracking model.

57.7 PROTON STABILITY

The X and Z stabilizer sectors remain distinct at all scales. No mechanism for baryon number violation exists
in the framework. Current bounds (𝜏 > 1034 years) are consistent. Detection of proton decay through any
channel would falsify the framework.

58 CLOSING

The gauge group, generation count, and gravitational coefficients arise as structural necessities of the Steane
code. The coupling constants and mass spectrum match experiment at percent-level precision across 106
independent predictions. The predictions for neutrino masses, the tensor-to-scalar ratio, and dark energy
allow immediate testing.

The vacuum code hypothesis stands as a falsifiable description of fundamental structure.
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Appendices
A UNIQUENESS

The vacuum structure is determined by physical requirements. This appendix shows that the Steane [[7, 1, 3]]
code on the 𝐴2 lattice is the unique solution.

A.1 CODE SELECTION

Five requirements determine the quantum error-correcting code:
1. Error Correction. The vacuum must correct arbitrary single-qubit errors, requiring distance 𝑑 ≥ 3.

Without this, coherence decays on Planck timescales.
2. Symmetric Error Handling. Bit-flip (𝑋) and phase-flip (𝑍) errors must be treated identically. In quantum

mechanics, 𝑋 and 𝑍 are Hadamard conjugates; asymmetry would require explanation. This requires CSS
structure.

3. Self-Duality. The 𝑋-stabilizers and 𝑍-stabilizers must have identical algebraic structure, reflecting
electromagnetic duality at the fundamental level.

4. Fault-Tolerant Gates. Physical processes must not amplify errors. Transversal Clifford gates ensure
single-qubit errors remain single-qubit after gate application.

5. Minimality. The code should use the fewest physical qubits consistent with the above, maximizing
information density.

A.1.1 Quantum Hamming Bound

Theorem A.1. Any [[𝑛, 1, 3]] code requires 𝑛 ≥ 5 physical qubits.

Proof. The quantum Hamming bound requires 1 + 3𝑛 ≤ 2𝑛−1. For 𝑛 = 4: 13 > 8. For 𝑛 = 5: 16 = 16.
Therefore 𝑛 ≥ 5. □

A.1.2 Exclusion of Alternatives

The [[5, 1, 3]] code saturates the Hamming bound but fails requirements 2 and 4: its stabilizers mix 𝑋 and 𝑍
operators (not CSS), and it lacks a transversal Hadamard gate.

The Shor [[9, 1, 3]] code is CSS but fails requirements 3 and 5: it is not self-dual and uses 9 qubits rather
than 7.

A.1.3 Steane Code Uniqueness

Theorem A.2 (Steane Code Uniqueness). The Steane [[7, 1, 3]] code is the unique code satisfying all five
requirements.

Proof. CSS structure (requirement 2) with 𝑑 = 3 requires construction from a classical [𝑛, 𝑘, 3] code.
Self-duality (requirement 3) requires the code to equal its dual. The smallest self-dual CSS code with 𝑑 ≥ 3
is built from the [7, 4, 3] Hamming code. Transversal Cliffords (requirement 4) are satisfied. No smaller code
exists (requirement 5). □



Critical Code Theory 77

A.1.4 Mersenne Structure

The Steane code parameters form Mersenne numbers:

(𝑘, 𝑑, 𝑛) = (1, 3, 7) = (21 − 1, 22 − 1, 23 − 1) (266)

This structure follows from the classical code construction. Hamming codes exist for lengths 𝑛 = 2𝑚 − 1.
The 𝑚 = 3 case is the minimum that permits a CSS construction with 𝑘 ≥ 1 and 𝑑 ≥ 3.

A.2 LATTICE SELECTION

Four requirements determine the geometric substrate:
1. Two-dimensional bulk. Holographic encoding requires a 2D substrate whose 1D boundary encodes bulk

information.
2. Homogeneity. Every vertex is equivalent under lattice symmetries.
3. Isotropy. Maximal rotational symmetry at each vertex. Lorentz invariance in the continuum limit requires
𝐶6 symmetry; 𝐶4 produces observable anisotropy.

4. Rigidity. The lattice must be mechanically rigid. Floppy modes would appear as unobserved massless
scalars.

A.2.1 Throughput Optimization

Define the Holographic Throughput T (𝐺) for a geometric graph 𝐺:

T (𝐺) = Cholo(𝐺) · Γrelax(𝐺) (267)

where Cholo is the linear cut density (holographic capacity) and Γrelax is the spectral gap of the normalized
Laplacian.

Lattice Capacity Gap Throughput

Square (𝑍2) 1.00 (ref) ∼ 0.0 1.00 (ref)
Hexagonal 0.58 lower 0.45
Triangular (𝐴2) 1.15 higher 1.32

The triangular lattice packs 15% more edge cuts per unit length than the square lattice and achieves 32%
higher throughput.

A.2.2 Exclusion of Alternatives

Square lattice. Fails isotropy. The dispersion relation 𝜔2 ∝ sin2(𝑘𝑥𝑎/2) + sin2(𝑘𝑦𝑎/2) breaks rotational
invariance. IceCube bounds (Δ𝑐/𝑐 < 10−28) rule this out.

Hexagonal lattice. Fails rigidity. By the Laman theorem, coordination 3 yields 𝑂 (𝑁) floppy modes.
These would manifest as massless scalar fields.

Triangular (𝐴2) lattice. Satisfies all requirements: 𝐶6 symmetry, over-constrained rigidity (𝐸 = 3𝑁 >

2𝑁 − 3), and optimal Nyquist sampling.
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A.2.3 Supporting Results

Three classical results support this selection:
Petersen-Middleton (1962): The triangular lattice minimizes information loss when sampling a

continuous signal at fixed density.
Maxwell (1864): The triangular lattice is exactly rigid. Coordination number 6 satisfies the Laman

condition with no floppy modes and no redundant constraints.
Isotropy: The 6-fold symmetry of 𝐴2 produces isotropic wave propagation at leading order. Anisotropic

corrections enter only at order |k|4.

A.3 GRAVITATIONAL COEFFICIENTS

The Schwarzschild and Bekenstein-Hawking coefficients provide an additional uniqueness constraint.

A.3.1 Schwarzschild Coefficient

The Steane code protects 𝑘 = 1 logical qubit against up to 𝑑 − 1 = 2 errors. The protection ratio is:

𝑘

𝑑 − 1
=

1
2

(268)

A horizon forms when compactness equals the inverse protection ratio:

𝑅𝑠 =
(𝑑 − 1)
𝑘

· 𝐺𝑀
𝑐2 =

2𝐺𝑀
𝑐2 (269)

The coefficient (𝑑 − 1)/𝑘 = 2 is universal for distance-3, 𝑘 = 1 codes.

A.3.2 Bekenstein-Hawking Factor

Each horizon cell has:
• 𝑛 = 7 physical qubits (bulk, inaccessible)
• 𝑑 = 3 syndrome bits (boundary, accessible)
• 2 logical operators (gauge freedom)

Total degrees of freedom per cell: 𝑛 + 𝑑 + 2 = 12.
The externally measurable fraction is:

𝑓 =
𝑑

𝑛 + 𝑑 + 2
=

3
12

=
1
4

(270)

A.3.3 Uniqueness Among Codes

Code (𝑛, 𝑘, 𝑑) (𝑑 − 1)/𝑘 𝑑/(𝑛 + 𝑑 + 2) Status

5-qubit (5, 1, 3) 2 0.30 Bekenstein fails
Steane (7, 1, 3) 2 0.25 Both correct
Shor (9, 1, 3) 2 0.21 Bekenstein fails

The Bekenstein factor 1/4 requires 𝑛 = 3𝑑 − 2. Among minimal CSS codes with 𝑑 = 3, only the Steane
code satisfies this constraint.
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A.3.4 Geodesic Coefficients

The Schwarzschild coefficient (𝑑 − 1)/𝑘 = 2 determines the horizon radius. Other gravitational observables
involve combinations of this coefficient with the code distance 𝑑.

Light deflection. A photon traversing a gravitational field follows a null geodesic, sampling both temporal
and spatial curvature. The total deflection angle is:

Δ𝜙 =
4𝐺𝑀
𝑐2𝑏

= 2 × 𝑑 − 1
𝑘

× 𝐺𝑀

𝑐2𝑏
. (271)

The factor of 4 arises as 2 × (𝑑 − 1)/𝑘 = 2 × 2 = 4: the photon crosses the error-correction boundary twice
(inbound and outbound).

Perihelion precession. An orbiting body samples the gradient of the gravitational potential, which involves
the code distance directly:

Δ𝜔 =
6𝜋𝐺𝑀

𝑐2𝑎(1 − 𝑒2)
=
𝑑 − 1
𝑘

× 𝑑 × 𝜋𝐺𝑀

𝑐2𝑎(1 − 𝑒2)
. (272)

The factor of 6 arises as (𝑑 − 1)/𝑘 × 𝑑 = 2 × 3 = 6.

Shapiro delay. The time delay for signals passing near a massive body is:

Δ𝑡 =
4𝐺𝑀
𝑐3 ln

(
4𝑟1𝑟2

𝑏2

)
. (273)

The coefficient 4 matches light deflection: null geodesics sample the same boundary crossing structure.

Summary of coefficients. The gravitational coefficients form a consistent set:

Observable Formula Coefficient

Schwarzschild radius (𝑑 − 1)/𝑘 2
Bekenstein-Hawking entropy 𝑑/(𝑛 + 𝑑 + 2) 1/4
Light deflection 2(𝑑 − 1)/𝑘 4
Perihelion precession (𝑑 − 1)/𝑘 × 𝑑 6
Shapiro delay 2(𝑑 − 1)/𝑘 4

A.4 SUMMARY

Alternative Requirement Failed Failure Mode

5-qubit [[5, 1, 3]] CSS, Fault-tolerant, Bekenstein Mixed stabilizers; no transversal 𝐻; wrong entropy
Shor [[9, 1, 3]] Self-dual, Minimal, Bekenstein Not self-dual; 9 qubits; wrong entropy
Square lattice Isotropy 𝐶4 anisotropy; Lorentz violation
Hexagonal lattice Rigidity Floppy modes; massless scalars

The Steane [[7, 1, 3]] code on the 𝐴2 lattice is the unique structure satisfying all physical requirements
and reproducing both gravitational coefficients.
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